[1] 管学茂,杨 雷.混凝土材料学[M].北京:化学工业出版社,2011. GUAN X M, YANG L. Concrete material science[M]. Beijing: Chemical Industry Press, 2011 (in Chinese). [2] KUMAR R, BHATTACHARJEE B. Porosity, pore size distribution and in situ strength of concrete[J]. Cement and Concrete Research, 2003, 33(1): 155-164. [3] GRZESZCZYK S, MATUSZEK-CHMUROWSKA A, VEJMELKOVÁ E, et al. Reactive powder concrete containing basalt fibers: strength, abrasion and porosity[J]. Materials, 2020, 13(13): 2948. [4] CANDELARIA M D E, KEE S H, YEE J J, et al. Effects of saturation levels on the ultrasonic pulse velocities and mechanical properties of concrete[J]. Materials, 2020, 14(1): 152. [5] FAGERLUND G. Significance of critical degrees of saturation at freezing of porous and brittle materials[J]. ACI Structural Journal, 1975: 13-65. [6] 罗明勇,桂 强,李克非.孔隙结构及饱水度对水泥基材料透气性的影响[J].硅酸盐学报,2014,42(8):974-980. LUO M Y, GUI Q, LI K F. Influence of pore structure and degree of saturation on gas permeability of cement based materials[J]. Journal of the Chinese Ceramic Society, 2014, 42(8): 974-980 (in Chinese). [7] LI L G, FENG J J, ZHU J, et al. Pervious concrete: effects of porosity on permeability and strength[J]. Magazine of Concrete Research, 2021, 73(2): 69-79. [8] 徐 兵,徐 港,杨亚会,等.孔隙水饱和度对混凝土碳化特性的影响[J].水电能源科学,2018,36(5):87-90. XU B, XU G, YANG Y H, et al. Influence of pore water saturation on carbonization characteristics of concrete[J]. Water Resources and Power, 2018, 36(5): 87-90 (in Chinese). [9] 王海龙,银文文,程旭东,等.地震应变率下水饱和度对混凝土动力压缩效应的影响[J].水利学报,2019,50(2):225-232. WANG H L, YIN W W, CHENG X D, et al. Influence of water content on dynamic compressive properties of concrete subjected to seismic strain rate[J]. Journal of Hydraulic Engineering, 2019, 50(2): 225-232 (in Chinese). [10] 张国辉,李肖杭,李常兵,等.干燥状态下混凝土孔隙结构研究[J].西北农林科技大学学报(自然科学版),2021,49(1):136-142+154. ZHANG G H, LI X H, LI C B, et al. Pore structure of concrete under dry condition[J]. Journal of Northwest A&F University (Natural Science Edition), 2021, 49(1): 136-142+154 (in Chinese). [11] 陈峰宾,许 斌,焦华喆,等.玄武岩纤维混凝土纤维分布及孔隙结构表征[J].中国矿业大学学报,2021,50(2):273-280. CHEN F B, XU B, JIAO H Z, et al. Fiber distribution and pore structure characterization of basalt fiber reinforced concrete[J]. Journal of China University of Mining & Technology, 2021, 50(2): 273-280 (in Chinese). [12] 陆秀峰,刘西拉,覃维祖.自然环境条件下混凝土孔隙水饱和度分布[J].四川建筑科学研究,2007,33(5):114-117+121. LU X F, LIU X L, QIN W Z. Moisture distribution of concrete in nature climate[J]. Sichuan Building Science, 2007, 33(5): 114-117+121 (in Chinese). [13] 鲁彩凤,张艳龙,姬永生,等.基于微环境温湿度的混凝土孔隙水饱和度预计[J].中南大学学报(自然科学版),2017,48(3):761-768. LU C F, ZHANG Y L, JI Y S, et al. Prediction of pore water saturation based on micro-environment temperature and relative humidity in concrete[J]. Journal of Central South University (Science and Technology), 2017, 48(3): 761-768 (in Chinese). [14] 黄耀英,刘 钰,高 俊,等.真实环境下早龄期水工混凝土内部相对湿度实验研究[J].应用基础与工程科学学报,2019,27(4):744-752. HUANG Y Y, LIU Y, GAO J, et al. Experimental study on relative humidity of hydraulic concrete at early age under real environmental conditions[J]. Journal of Basic Science and Engineering, 2019, 27(4): 744-752 (in Chinese). [15] 杨 林,张云升,张春晓.基于X-CT的非饱和水泥基材料水分传输与渗透系数计算[J].硅酸盐通报,2020,39(12):3775-3782. YANG L, ZHANG Y S, ZHANG C X. Water transport and permeability coefficient calculation for unsaturated cement-based materials based on X-CT[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(12): 3775-3782 (in Chinese). [16] 王冬丽,杨 策,潘慧敏,等.水泥基材料孔结构与吸水性能关系研究进展[J].硅酸盐通报,2021,40(5):1420-1428+1440. WANG D L, YANG C, PAN H M, et al. Research progress on relationship between pore structure and water absorption performance of cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(5): 1420-1428+1440 (in Chinese). [17] 唐 明,王甲春,李连君.压汞测孔评价混凝土材料孔隙分形特征的研究[J].沈阳建筑工程学院学报(自然科学版),2001,17(4):272-275. TANG M, WANG J C, LI L J. Research on fractal characteristics of concrete materials pore with MIP[J]. Journal of Shenyang Architectural and Civil Engineering Institute, 2001, 17(4): 272-275 (in Chinese). [18] 陈 悦,李东旭.压汞法测定材料孔结构的误差分析[J].硅酸盐通报,2006,25(4):198-201+207. CHEN Y, LI D X. Analysis of error for pore structure of porous materials measured by MIP[J]. Bulletin of the Chinese Ceramic Society, 2006, 25(4): 198-201+207 (in Chinese). [19] 邱继生,邢 敏,杨占鲁,等.冻融作用下聚丙烯纤维煤矸石混凝土孔结构研究[J].混凝土与水泥制品,2020(6):41-44+48. QIU J S, XING M, YANG Z L, et al. Pore structure characteristics of polypropylene fibre coal gangue concrete under freeze-thaw[J]. China Concrete and Cement Products, 2020(6): 41-44+48 (in Chinese). [20] 陈克凡,乔宏霞,王鹏辉,等.基于NMR的再生混凝土干湿循环可靠性评估[J].华中科技大学学报(自然科学版),2020,48(7):88-92. CHEN K F, QIAO H X, WANG P H, et al. Reliability evaluation of recycled concrete dry-wet cycle based on NMR[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(7): 88-92 (in Chinese). [21] 刘 倩,申向东,薛慧君,等.基于核磁共振技术对不同粗骨料混凝土孔隙特征试验研究[J].功能材料,2017,48(10):10066-10070+10076. LIU Q, SHEN X D, XUE H J, et al. Experimental study on pore characteristics of different coarse aggregate concrete based on NMR technique[J]. Journal of Functional Materials, 2017, 48(10): 10066-10070+10076 (in Chinese). [22] 中华人民共和国水利部.水工混凝土试验规程:SL 352—2006[S].北京:中国水利水电出版社,2006. China Institute of Water Resources and Hydropower. Test code for hydraulic concrete: SL 352—2006[S]. Beijing: China Water & Power Press, 2006 (in Chinese). [23] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.压汞法和气体吸附法测定固体材料孔径分布和孔隙度 第1部分:压汞法: GB/T 21650.1—2008[S].北京:中国标准出版社,2008. Beijing Center for Physical & Chemical Analysis, Institute of Process Engineering of Chinese Academy of Sciences. Evaluation of pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption part 1 mercury porosimetry: GB/T 21650.1—2008[S]. Beijing: Standards Press of China, 2008 (in Chinese). [24] British Standards Institution. Evaluation of pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption part 1 mercury porosimetry: ISO 15901-1: 2005[S]. Britain, 2005. [25] 国家能源局.岩样核磁共振参数实验室测量规范:SY/T 6490—2014[S].北京:石油工业出版社,2015. National Engergy Administration. Specification for measurement of rock NMR parameter in laboratory: SY/T 6490—2014[S]. Beijing: Petroleum Industry Press, 2015 (in Chinese). [26] 吴中伟.混凝土材料学:各种混凝土的组成与结构[J].混凝土及建筑构件,1980(4):1-6. WU Z W. Concrete material science composition and structure of various concretes[J]. Concrete, 1980(4): 1-6 (in Chinese). [27] 高 原,张 君,孙 伟.密封养护混凝土内部湿度与收缩的一体化试验与模拟[J].建筑材料学报,2013,16(2):203-209+231. GAO Y, ZHANG J, SUN W. Tests and simulations of interior humidity and shrinkage of concrete under sealed condition[J]. Journal of Building Materials, 2013, 16(2): 203-209+231 (in Chinese). [28] 吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999. WU Z W, LIAN H Z. High performance concrete[M]. First edition. Beijing: China Railway Publishing House, 1999 (in Chinese). [29] 谢 超,王起才,李 盛,等.不同水胶比、养护条件下混凝土孔结构、抗压强度与分形维数之间的关系[J].硅酸盐通报,2015,34(12):3695-3702. XIE C, WANG Q C, LI S, et al. Relations of pore fractral dimension to pore structure and compressive strength of concrete under different water to binder ratio and curing condition[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(12): 3695-3702 (in Chinese). [30] 乔凤蛟.掺粉煤灰高性能混凝土收缩性能研究[D].哈尔滨:哈尔滨工业大学,2007. QIAO F J. Research on the shrinkage ability of high performance concrete added fly ash[D]. Harbin: Harbin Institute of Technology, 2007 (in Chinese). |