硅酸盐通报 ›› 2021, Vol. 40 ›› Issue (9): 3064-3080.
谭划1,2, 南博1,2, 马伟刚2, 郭新1,2, 刘晶1, 袁绮1, 杨廷旺3, 陆文龙3, 臧佳栋3, 李浩宇3, 鄢文超3, 张升伟3, 卢亚1,2, 张海波1,2
收稿日期:
2021-03-19
修回日期:
2021-05-14
出版日期:
2021-09-15
发布日期:
2021-10-08
通讯作者:
张海波,博士,教授。E-mail:hbzhang@hust.edu.cn作者简介:
谭 划(1990—),男,博士。主要从事陶瓷材料快速烧结方面的研究。E-mail:hua_tan@hust.edu.cn
基金资助:
TAN Hua1,2, NAN Bo1,2, MA Weigang2, GUO Xin1,2, LIU Jing1, YUAN Qi1, YANG Tingwang3, LU Wenlong3, ZANG Jiadong3, LI Haoyu3, YAN Wenchao3, ZHANG Shengwei3, LU Ya1,2, ZHANG Haibo1,2
Received:
2021-03-19
Revised:
2021-05-14
Online:
2021-09-15
Published:
2021-10-08
摘要: 快速烧结技术在节省时间和能源方面的巨大优势使其成为一直以来的研究热点。近几十年来,快速烧结技术(如火花等离子烧结、闪电烧结、选区激光烧结、感应烧结、微波烧结和传统烧结装置中的快速烧结等)的发展,使陶瓷材料的快速烧结成为可能。本文综述了近20年来先进陶瓷领域中的快速烧结技术和烧结机理,并对火花等离子烧结中直流脉冲电流和机械压力对微观结构、材料性能和烧结机理的影响进行了深入分析和总结。同时指出,快速烧结技术今后的发展一方面是对烧结机理的进一步研究并应用到先进陶瓷材料的制备中,另一方面是解决快速烧结技术工业化生产中大尺寸、大批量生产的难题。
中图分类号:
谭划, 南博, 马伟刚, 郭新, 刘晶, 袁绮, 杨廷旺, 陆文龙, 臧佳栋, 李浩宇, 鄢文超, 张升伟, 卢亚, 张海波. 先进陶瓷材料快速烧结技术发展现状及趋势[J]. 硅酸盐通报, 2021, 40(9): 3064-3080.
TAN Hua, NAN Bo, MA Weigang, GUO Xin, LIU Jing, YUAN Qi, YANG Tingwang, LU Wenlong, ZANG Jiadong, LI Haoyu, YAN Wenchao, ZHANG Shengwei, LU Ya, ZHANG Haibo. Rapid Sintering Techniques of Advanced Ceramic Materials: A Review[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(9): 3064-3080.
[1] KINGERY W D, LENSE E. Ancient technology to modern science[M]. American Ceramic Society, 1985. [2] 魏玉静,方海亮,邱小小,等.SPS制备MgO-Y2O3复相陶瓷及其性能研究[J].硅酸盐通报,2020,39(7):2274-2280. WEI Y J, FANG H L, QIU X X, et al. Preparation and performance research of MgO-Y2O3 composite ceramics by SPS[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(7): 2274-2280 (in Chinese). [3] 赵江涛,沈金城,刘 欢,等.放电等离子体烧结下Nb掺杂量对TiO2陶瓷靶材性能的影响[J].硅酸盐通报,2018,37(9):2991-2994. ZHAO J T, SHEN J C, LIU H, et al. Effect of Nb doping on the properties of TiO2 ceramic target under spark plasma sintering[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(9): 2991-2994 (in Chinese). [4] SHEN Z J, ZHAO Z, PENG H, et al. Formation of tough interlocking microstructures in silicon nitride ceramics by dynamic ripening[J]. Nature, 2002, 417(6886): 266-269. [5] MUNIR Z A, QUACH D V, OHYANAGI M. Electric current activation of sintering: a review of the pulsed electric current sintering process[J]. Journal of the American Ceramic Society, 2011, 94(1): 1-19. [6] ORRÙ R, LICHERI R, LOCCI A M, et al. Consolidation/synthesis of materials by electric current activated/assisted sintering[J]. Materials Science and Engineering: R: Reports, 2009, 63(4/5/6): 127-287. [7] MOSHTAGHIOUN B M, CUMBRERA-HERNÁNDEZ F L, GÓMEZ-GARCÍA D, et al. Effect of spark plasma sintering parameters on microstructure and room-temperature hardness and toughness of fine-grained boron carbide (B4C)[J]. Journal of the European Ceramic Society, 2013, 33(2): 361-369. [8] JI W, REHMAN S S, WANG W M, et al. Sintering boron carbide ceramics without grain growth by plastic deformation as the dominant densification mechanism[J]. Scientific Reports, 2015, 5: 15827. [9] HAYUN S, PARIS V, MITRANI R, et al. Microstructure and mechanical properties of silicon carbide processed by spark plasma sintering (SPS)[J]. Ceramics International, 2012, 38(8): 6335-6340. [10] BIJALWAN V, PRAJZLER V, ERHART J, et al. Rapid pressure-less and spark plasma sintering of (Ba0.85Ca0.15Zr0.1T0.9)O3 lead-free piezoelectric ceramics[J]. Journal of the European Ceramic Society, 2021, 41(4): 2514-2523. [11] HUANG Y H, WU Y J, LIU B, et al. From core-shell Ba0.4Sr0.6TiO3@SiO2 particles to dense ceramics with high energy storage performance by spark plasma sintering[J]. Journal of Materials Chemistry A, 2018, 6(10): 4477-4484. [12] LIU B, WU Y, HUANG Y H, et al. Enhanced dielectric strength and energy storage density in BaTi0.7Zr0.3O3 ceramics via spark plasma sintering[J]. Journal of Materials Science, 2019, 54(6): 4511-4517. [13] SOKOL M, KALABUKHOV S, DARIEL M P, et al. High-pressure spark plasma sintering (SPS) of transparent polycrystalline magnesium aluminate spinel (PMAS)[J]. Journal of the European Ceramic Society, 2014, 34(16): 4305-4310. [14] LALLEMANT L, FANTOZZI G, GARNIER V, et al. Transparent polycrystalline alumina obtained by SPS: green bodies processing effect[J]. Journal of the European Ceramic Society, 2012, 32(11): 2909-2915. [15] OMORI M. Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS)[J]. Materials Science and Engineering: A, 2000, 287(2): 183-188. [16] SHEN Z J, JOHNSSON M, ZHAO Z, et al. Spark plasma sintering of alumina[J]. Journal of the American Ceramic Society, 2002, 85(8): 1921-1927. [17] MUNIR Z A, ANSELMI-TAMBURINI U, OHYANAGI M. The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method[J]. Journal of Materials Science, 2006, 41(3): 763-777. [18] MUNIR Z A. The effect of external electric fields on the nature and properties of materials synthesized by self-propagating combustion[J]. Materials Science and Engineering: A, 2000, 287(2): 125-137. [19] CONRAD H. Effects of electric current on solid state phase transformations in metals[J]. Materials Science and Engineering: A, 2000, 287(2): 227-237. [20] CONRAD H, YANG D. Effect of an electric field on the plastic deformation kinetics of electrodeposited Cu at low and intermediate temperatures[J]. Acta Materialia, 2002, 50(11): 2851-2866. [21] XU J, CASOLCO S R, GARAY J E. Effect of varying displacement rates on the densification of nanostructured zirconia by current activation[J]. Journal of the American Ceramic Society, 2009, 92(7): 1506-1513. [22] MATSUGI K, KURAMOTO H, HATAYAMA T, et al. Temperature distribution at steady state under constant current discharge in spark sintering process of Ti and Al2O3 powders[J]. Journal of Materials Processing Technology, 2003, 134(2): 225-232. [23] ABE T, HASHIMOTO H, PARK Y H, et al. Application of ultrasonic image to the evaluation of temperature distribution in metal powder compacts during spark plasma activated sintering[J]. Nondestructive Characterization of Materials VIII, 1998: 251-256. [24] WANG Y C, FU Z Y, ZHANG Q J. SPS temperature distribution of different conductivity materials[J]. Key Engineering Materials, 2002, 224/225/226: 717-720. [25] WANG Y C, FU Z Y, WANG W M. Numerical simulation of the temperature field in sintering of BN by SPS[J]. Key Engineering Materials, 2003, 249: 471-476. [26] VANMEENSEL K, LAPTEV A, HENNICKE J, et al. Modelling of the temperature distribution during field assisted sintering[J]. Acta Materialia, 2005, 53(16): 4379-4388. [27] ANSELMI-TAMBURINI U, GENNARI S, GARAY J E, et al. Fundamental investigations on the spark plasma sintering/synthesis process[J]. Materials Science and Engineering: A, 2005, 394(1/2): 139-148. [28] LEVIN L, FRAGE N, DARIEL M P. The effect of Ti and TiO2 additions on the pressureless sintering of B4C[J]. Metallurgical and Materials Transactions A, 1999, 30(12): 3201-3210. [29] JHA S K, PHUAH X L, LUO J, et al. The effects of external fields in ceramic sintering[J]. Journal of the American Ceramic Society, 2019, 102(1): 5-31. [30] TIWARI D, BASU B, BISWAS K. Simulation of thermal and electric field evolution during spark plasma sintering[J]. Ceramics International, 2009, 35(2): 699-708. [31] ANSELMI-TAMBURINI U, GROZA J R. Critical assessment 28: electrical field/current application-a revolution in materials processing/sintering?[J]. Materials Science and Technology, 2017, 33(16): 1855-1862. [32] HOLLAND T B, ANSELMI-TAMBURINI U, MUKHERJEE A K. Electric fields and the future of scalability in spark plasma sintering[J]. Scripta Materialia, 2013, 69(2): 117-121. [33] HOLLAND T B, ANSELMI-TAMBURINI U, QUACH D V, et al. Local field strengths during early stage field assisted sintering (FAST) of dielectric materials[J]. Journal of the European Ceramic Society, 2012, 32(14): 3659-3666. [34] CHAIM R. Electric field effects during spark plasma sintering of ceramic nanoparticles[J]. Journal of Materials Science, 2013, 48(1): 502-510. [35] GRASSO S, SAKKA Y. Electric field in SPS: geometry and pulsed current effects[J]. Journal of the Ceramic Society of Japan, 2013, 121(1414): 524-526. [36] SALAMON D, ERIKSSON M, NYGREN M, et al. Can the use of pulsed direct current induce oscillation in the applied pressure during spark plasma sintering?[J]. Science and Technology of Advanced Materials, 2012, 13(1): 015005. [37] TAN H, KALOUSEK R, SALAMON D. Increasing energy efficiency by tailoring the electric pulse pattern during spark plasma sintering[J]. Ceramics International, 2019, 45(18): 24392-24397. [38] QUOC DANG K, KAWAHARA M, TAKEI S, et al. Effects of pulsed current waveforms on sample temperature and sintering behavior in PECS of alumina[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 2009, 56(12): 780-787. [39] XIE G Q, OHASHI O, CHIBA K, et al. Frequency effect on pulse electric current sintering process of pure aluminum powder[J]. Materials Science and Engineering: A, 2003, 359(1/2): 384-390. [40] MANIERE C, PAVIA A, DURAND L, et al. Pulse analysis and electric contact measurements in spark plasma sintering[J]. Electric Power Systems Research, 2015, 127: 307-313. [41] GUILLARD F, ALLEMAND A, LULEWICZ J D, et al. Densification of SiC by SPS-effects of time, temperature and pressure[J]. Journal of the European Ceramic Society, 2007, 27(7): 2725-2728. [42] QUACH D V, AVILA-PAREDES H, KIM S, et al. Pressure effects and grain growth kinetics in the consolidation of nanostructured fully stabilized zirconia by pulsed electric current sintering[J]. Acta Materialia, 2010, 58(15): 5022-5030. [43] MENG F C, FU Z Y, ZHANG J Y, et al. Rapid densification of nano-grained alumina by high temperature and pressure with a very high heating rate[J]. Journal of the American Ceramic Society, 2007, 90(4): 1262-1264. [44] ANSELMI-TAMBURINI U, GARAY J E, MUNIR Z A, et al. Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: part I. Densification studies[J]. Journal of Materials Research, 2004, 19(11): 3255-3262. [45] ANSELMI-TAMBURINI U, GARAY J E, MUNIR Z A. Fast low-temperature consolidation of bulk nanometric ceramic materials[J]. Scripta Materialia, 2006, 54(5): 823-828. [46] BALIMA F, BELLIN F, MICHAU D, et al. High pressure pulsed electric current activated equipment (HP-SPS) for material processing[J]. Materials & Design, 2018, 139: 541-548. [47] GRASSO S, KIM B N, HU C F, et al. Highly transparent pure alumina fabricated by high-pressure spark plasma sintering[J]. Journal of the American Ceramic Society, 2010, 93(9): 2460-2462. [48] ZHANG H B, KIM B N, MORITA K, et al. Fabrication of transparent yttria by high-pressure spark plasma sintering[J]. Journal of the American Ceramic Society, 2011, 94(10): 3206-3210. [49] GRAAF M A C G, MAAT J H H, BURGGRAAF A J. Microstructure and sintering kinetics of highly reactive ZrO2-Y2O3 ceramics[J]. Journal of Materials Science, 1985, 20(4): 1407-1418. [50] ONODA G Y, TONER J. Fractal dimensions of model particle packings having multiple generations of agglomerates[J]. Journal of the American Ceramic Society, 1986, 69(11): C-278-C-279. [51] MAKINO Y, SAKAGUCHI M, TERADA J, et al. Consolidation of ultrafine alumina powders with SPS method[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 2007, 54(4): 219-225. [52] GUILLON O, JESUS G, DARGATZ B, et al. Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments[J]. Advanced Engineering Materials, 2014, 16(7): 830-849. [53] CHAIM R, SHEN Z J. Grain size control by pressure application regime during spark plasma sintering of Nd-YAG nanopowders[J]. Journal of Materials Science, 2008, 43(14): 5023-5027. [54] GRASSO S, SAKKA Y, MAIZZA G. Pressure effects on temperature distribution during spark plasma sintering with graphite sample[J]. Materials Transactions, 2009, 50(8): 2111-2114. [55] SCITI D, GALIZIA P, REIMER T, et al. Properties of large scale ultra-high temperature ceramic matrix composites made by filament winding and spark plasma sintering[J]. Composites Part B: Engineering, 2021, 216: 108839. [56] TOKITA M. The potential of spark plasma sintering (SPS) method for the fabrication on an industrial scale of functionally graded materials[J]. Advances in Science and Technology, 2010, 63: 322-331. [57] DANCER C J. Flash sintering of ceramic materials[J]. Materials Research Express, 2016, 3(10): 102001. [58] CHAIM R, CHEVALLIER G, WEIBEL A, et al. Grain growth during spark plasma and flash sintering of ceramic nanoparticles: a review[J]. Journal of Materials Science, 2018, 53(5): 3087-3105. [59] TODD R I. Flash sintering of ceramics: a short review[M]//Proceedings of the IV Advanced Ceramics and Applications Conference. Paris: Atlantis Press, 2017: 1-12. [60] BIESUZ M, SGLAVO V M. Flash sintering of ceramics[J]. Journal of the European Ceramic Society, 2019, 39(2/3): 115-143. [61] YU M, GRASSO S, MCKINNON R, et al. Review of flash sintering: materials, mechanisms and modelling[J]. Advances in Applied Ceramics, 2017, 116(1): 24-60. [62] COLOGNA M, FRANCIS J S C, RAJ R. Field assisted and flash sintering of alumina and its relationship to conductivity and MgO-doping[J]. Journal of the European Ceramic Society, 2011, 31(15): 2827-2837. [63] CALIMAN L B, BICHAUD E, SOUDANT P, et al. A simple flash sintering setup under applied mechanical stress and controlled atmosphere[J]. MethodsX, 2015, 2: 392-398. [64] GRASSO S, SAUNDERS T, PORWAL H, et al. Flash spark plasma sintering (FSPS) of pure ZrB2[J]. Journal of the American Ceramic Society, 2014, 97(8): 2405-2408. [65] SAUNDERS T, GRASSO S, REECE M J. Ultrafast-contactless flash sintering using plasma electrodes[J]. Scientific Reports, 2016, 6: 27222. [66] FRANCIS J S C. A study on the phenomena of flash sintering with tetragonal zirconia[D]. Boulder: University of Colorado Boulder, 2013. [67] COLOGNA M, RASHKOVA B, RAJ R. Flash sintering of nanograin zirconia in <5 s at 850 ℃[J]. Journal of the American Ceramic Society, 2010, 93(11): 3556-3559. [68] GHOSH S, CHOKSHI A H, LEE P, et al. A huge effect of weak dc electrical fields on grain growth in zirconia[J]. Journal of the American Ceramic Society, 2009, 92(8): 1856-1859. [69] CHAIM R. Liquid film capillary mechanism for densification of ceramic powders during flash sintering[J]. Materials, 2016, 9(4): 280. [70] TODD R I, ZAPATA-SOLVAS E, BONILLA R S, et al. Electrical characteristics of flash sintering: thermal runaway of Joule heating[J]. Journal of the European Ceramic Society, 2015, 35(6): 1865-1877. [71] NAIK K S, SGLAVO V M, RAJ R. Flash sintering as a nucleation phenomenon and a model thereof[J]. Journal of the European Ceramic Society, 2014, 34(15): 4063-4067. [72] KIM S W, KIM S G, JUNG J I, et al. Enhanced grain boundary mobility in yttria-stabilized cubic zirconia under an electric current[J]. Journal of the American Ceramic Society, 2011, 94(12): 4231-4238. [73] YOSHIDA H, MORITA K, KIM B N, et al. Reduction in sintering temperature for flash-sintering of yttria by nickel cation-doping[J]. Acta Materialia, 2016, 106: 344-352. [74] JHA S K, TERAUDS K, LEBRUN J M, et al. Beyond flash sintering in 3mol% yttria stabilized zirconia[J]. Journal of the Ceramic Society of Japan, 2016, 124(4): 283-288. [75] BONOLA C, CAMAGNI P, CHIODELLI P, et al. Study of defects introduced by electroreduction in YSZ[J]. Radiation Effects and Defects in Solids, 1991, 119/120/121(1): 457-462. [76] QIN W, MAJIDI H, YUN J, et al. Electrode effects on microstructure formation during FLASH sintering of yttrium-stabilized zirconia[J]. Journal of the American Ceramic Society, 2016, 99(7): 2253-2259. [77] MANGANO F, CHAMBRONE L, VAN NOORT R, et al. Direct metal laser sintering titanium dental implants: a review of the current literature[J]. International Journal of Biomaterials, 2014, 2014: 461534. [78] SING S L, YEONG W Y, WIRIA F E, et al. Direct selective laser sintering and melting of ceramics: a review[J]. Rapid Prototyping Journal, 2017, 23(3): 611-623. [79] SHIRAZI S F, GHAREHKHANI S, MEHRALI M, et al. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing[J]. Science and Technology of Advanced Materials, 2015, 16(3): 033502. [80] ZENG K, PAL D, STUCKER B. A review of thermal analysis methods in laser sintering and selective laser melting[J]. 23rd Annual International Solid Freeform Fabrication Symposium-an Additive Manufacturing Conference, SFF 2012, 2012: 796-814. [81] OLAKANMI E O, COCHRANE R F, DALGARNO K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties[J]. Progress in Materials Science, 2015, 74: 401-477. [82] KRUTH J P, WANG X, LAOUI T, et al. Lasers and materials in selective laser sintering[J]. Assembly Automation, 2003, 23(4): 357-371. [83] KOCHAN D, KAI C C, DU Z H. Rapid prototyping issues in the 21st century[J]. Computers in Industry, 1999, 39(1): 3-10. [84] MORGAN R, SUTCLIFFE C J, O’NEILL W. Experimental investigation of nanosecond pulsed Nd: YAG laser re-melted pre-placed powder beds[J]. Rapid Prototyping Journal, 2001, 7(3): 159-172. [85] VAN DER SCHUEREN B, KRUTH J P. Powder deposition in selective metal powder sintering[J]. Rapid Prototyping Journal, 1995, 1(3): 23-31. [86] KRUTH J P, VAN DER SCHUEREN B, BONSE J E, et al. Basic powder metallurgical aspects in selective metal powder sintering[J]. CIRP Annals, 1996, 45(1): 183-186. [87] NIU H J, CHANG I T H. Selective laser sintering of gas atomized M2 high speed steel powder[J]. Journal of Materials Science, 2000, 35(1): 31-38. [88] KUMAR S. Selective laser sintering: a qualitative and objective approach[J]. JOM, 2003, 55(10): 43-47. [89] AGARWALA M, BOURELL D, BEAMAN J, et al. Direct selective laser sintering of metals[J]. Rapid Prototyping Journal, 1995, 1(1): 26-36. [90] XIONG J, LI X B, FENG Z J, et al. Fabrication and properties of in situ formed mullite coating by laser-sintering[J]. Journal of the Chinese Ceramic Society, 2019, 47(5): 675-678. [91] HAYDEN C. Excimer laser micromachined three-dimensional microstructures—techniques and applications[G]//MEMS/NEMS. Boston, MA: Springer US, 2006: 880-904. [92] PERRIE W, RUSHTON A, GILL M, et al. Femtosecond laser micro-structuring of alumina ceramic[J]. Applied Surface Science, 2005, 248(1/2/3/4): 213-217. [93] SUBRAMANIAN K, VAIL N, BARLOW J, et al. Selective laser sintering of alumina with polymer binders[J]. Rapid Prototyping Journal, 1995, 1(2): 24-35. [94] CHEN A N, WU J M, LIU K, et al. High-performance ceramic parts with complex shape prepared by selective laser sintering: a review[J]. Advances in Applied Ceramics, 2018, 117(2): 100-117. [95] YEONG W, YAP C, MAPAR M, et al. State-of-the-art review on selective laser melting of ceramics[M]//High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping, CRC Press, 2013: 65-70. [96] TANG Y, FUH J Y H, LOH H T, et al. Direct laser sintering of a silica sand[J]. Materials & Design, 2003, 24(8): 623-629. [97] YVES-CHRISTIAN H, JAN W, WILHELM M, et al. Net shaped high performance oxide ceramic parts by selective laser melting[J]. Physics Procedia, 2010, 5: 587-594. [98] YANG L, MERTENS R, FERRUCCI M, et al. Continuous graded Gyroid cellular structures fabricated by selective laser melting: design, manufacturing and mechanical properties[J]. Materials & Design, 2019, 162: 394-404. [99] YANG L, YAN C Z, HAN C J, et al. Mechanical response of a triply periodic minimal surface cellular structures manufactured by selective laser melting[J]. International Journal of Mechanical Sciences, 2018, 148: 149-157. [100] LIU S S, LI M, WU J M, et al. Preparation of high-porosity Al2O3 ceramic foams via selective laser sintering of Al2O3 poly-hollow microspheres[J]. Ceramics International, 2020, 46(4): 4240-4247. [101] NAKUM V R, VYAS K M, MEHTA N C. Research on induction heating: a review[J]. International Journal of Science and Engineering Applications, 2013, 2(6): 141-144. [102] KENNEDY M W, AKHTAR S, BAKKEN J A, et al. Review of classical design methods as applied to aluminium billet heating with induction coils[M]//EPD Congress 2011. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012: 706-722. [103] MISHRA A, BAG S, PAL S. Induction heating in sustainable manufacturing and material processing technologies: a state of the art literature review[M]//Encyclopedia of Renewable and Sustainable Materials. Amsterdam: Elsevier, 2020: 343-357. [104] BAYERL T, DUHOVIC M, MITSCHANG P, et al. The heating of polymer composites by electromagnetic induction: a review[J]. Composites Part A: Applied Science and Manufacturing, 2014, 57: 27-40. [105] HIROTA I, YAMASHITA H, OMORI H, et al. Historical review of electric household appliances using induction-heating and future challenging trends[J]. IEEJ Transactions on Fundamentals and Materials, 2004, 124(8): 713-719. [106] LUCÍA O, MAUSSION P, DEDE E J, et al. Induction heating technology and its applications: past developments, current technology, and future challenges[J]. IEEE Transactions on Industrial Electronics, 2014, 61(5): 2509-2520. [107] SHON I J. High-frequency induction sintering of B4C ceramics and its mechanical properties[J]. Ceramics International, 2016, 42(16): 19406-19412. [108] KIM W, OH H S, SHON I J. The effect of graphene reinforcement on the mechanical properties of Al2O3 ceramics rapidly sintered by high-frequency induction heating[J]. International Journal of Refractory Metals and Hard Materials, 2015, 48: 376-381. [109] KWON S M, LEE S J, SHON I J. Enhanced properties of nanostructured ZrO2-graphene composites rapidly sintered via high-frequency induction heating[J]. Ceramics International, 2015, 41(1): 835-842. [110] WANG W N, LIU J C, SONG C Y. Directionally solidified Al2O3/ZrO2 eutectic ceramic prepared with induction heating zone melting[J]. Journal of Materials Research, 2018, 33(11): 1681-1689. [111] ZHAI S Y, LIU J C, LIU Q. Preparation of directionally solidified Al2O3/YAG/ZrO2 ternary eutectic ceramic with induction heating zone melting[J]. Journal of Alloys and Compounds, 2019, 789: 240-248. [112] BIESUZ M, SAUNDERS T, KE D Y, et al. A review of electromagnetic processing of materials (EPM): heating, sintering, joining and forming[J]. Journal of Materials Science & Technology, 2021, 69: 239-272. [113] OGHBAEI M, MIRZAEE O. Microwave versus conventional sintering: a review of fundamentals, advantages and applications[J]. Journal of Alloys and Compounds, 2010, 494(1-2): 175-189. [114] AYAPPA K G. Modelling transport processes during microwave heating: a review[J]. Reviews in Chemical Engineering, 1997, 13(2): 1-69. [115] JONES D A, LELYVELD T P, MAVROFIDIS S D, et al. Microwave heating applications in environmental engineering: a review[J]. Resources, Conservation and Recycling, 2002, 34(2): 75-90. [116] 梁宝岩,张旺玺,王艳芝,等.微波烧结制备Ti3SiC2-金刚石复合材料的显微形貌及界面反应机理[J].硅酸盐通报,2016,35(3):725-731. LIANG B Y, ZHANG W X, WANG Y Z, et al. Microstructure and interfacial reaction mechanism of Ti3SiC2-diamond composites fabricated by microwave sintering[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(3): 725-731 (in Chinese). [117] FARAJI S, ANI F N. Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors: a review[J]. Journal of Power Sources, 2014, 263: 338-360. [118] ALEM S A A, LATIFI R, ANGIZI S, et al. Microwave sintering of ceramic reinforced metal matrix composites and their properties: a review[J]. Materials and Manufacturing Processes, 2020, 35(3): 1-25. [119] ANWAR J, SHAFIQUE U, ZAMAN W, et al. Microwave chemistry: effect of ions on dielectric heating in microwave ovens[J]. Arabian Journal of Chemistry, 2015, 8(1): 100-104. [120] CHEN Y N, WANG Z J, YANG T, et al. Crystallization kinetics of amorphous lead zirconate titanate thin films in a microwave magnetic field[J]. Acta Materialia, 2014, 71: 1-10. [121] CHENG J P, ROY R, AGRAWAL D. Experimental proof of major role of magnetic field losses in microwave heating of metal and metallic composites[J]. Journal of Materials Science Letters, 2001, 20(17): 1561-1563. [122] VENKATESWARLU K, SAURABH S, RAJINIKANTH V, et al. Synthesis of TiN reinforced aluminium metal matrix composites through microwave sintering[J]. Journal of Materials Engineering and Performance, 2010, 19(2): 231-236. [123] GHASALI E, ALIZADEH M, EBADZADEH T, et al. Investigation on microstructural and mechanical properties of B4C-aluminum matrix composites prepared by microwave sintering[J]. Journal of Materials Research and Technology, 2015, 4(4): 411-415. [124] NATH S, SINHA N, BASU B. Microstructure, mechanical and tribological properties of microwave sintered calcia-doped zirconia for biomedical applications[J]. Ceramics International, 2008, 34(6): 1509-1520. [125] 张 帆,王 鑫,张 良,等.ZrO2陶瓷的微波烧结制备及其性能[J].硅酸盐学报,2019,47(3):353-357. ZHANG F, WANG X, ZHANG L, et al. Preparation and properties of ZrO2 ceramics by microwave sintering[J]. Journal of the Chinese Ceramic Society, 2019, 47(3): 353-357 (in Chinese). [126] SALAMON D, KALOUSEK R, ZLÁMAL J, et al. Role of conduction and convection heat transfer during rapid crack-free sintering of bulk ceramic with low thermal conductivity[J]. Journal of the European Ceramic Society, 2016, 36(12): 2955-2959. [127] PRAJZLER V, SALAMON D, MACA K. Pressure-less rapid rate sintering of pre-sintered alumina and zirconia ceramics[J]. Ceramics International, 2018, 44(9): 10840-10846. |
[1] | 胡鹏兵, 陈娟, 孙航, 蔡高洁, 胡现岳, 刘谨宁. 基于压电陶瓷的地聚合物砂浆强度发展监测研究[J]. 硅酸盐通报, 2021, 40(9): 2905-2910. |
[2] | 朱建平, 乐红志, 白荣, 朱俊阁, 李洪达. 利用黄金尾矿制备发泡陶瓷的研究[J]. 硅酸盐通报, 2021, 40(9): 2989-2997. |
[3] | 张衡, 吴赟, 李道谦, 李卓霖, 王怡洋, 吴松松, 孙志远, 温广武. 热处理气氛对SiBON陶瓷材料析晶行为的影响[J]. 硅酸盐通报, 2021, 40(9): 3114-3121. |
[4] | 林立尘, 万德田, 刘小根, 李恺, 包亦望, 李月明, 孙熠. 基于十字交叉法的陶瓷胶粘剂剪切蠕变性能研究[J]. 硅酸盐通报, 2021, 40(9): 3130-3137. |
[5] | 袁绮, 谭划, 杨廷旺, 陆文龙, 臧佳栋, 李浩宇, 鄢文超, 张升伟, 卢亚, 张海波. 多孔陶瓷的制备方法及研究现状[J]. 硅酸盐通报, 2021, 40(8): 2687-2701. |
[6] | 吕思敏, 杨金萍, 韩丹, 刘梦玮, 章健, 王士维. La2O3对镁铝尖晶石透明陶瓷致密化及其性能的影响[J]. 硅酸盐通报, 2021, 40(8): 2719-2725. |
[7] | 戴永刚, 陆成龙, 张银凤, 张国涛. 抛光渣体系发泡陶瓷的发泡性能研究[J]. 硅酸盐通报, 2021, 40(8): 2726-2733. |
[8] | 阿拉腾沙嘎, 陈冠宏, 陈星. 磁场作用下冷冻铸造法制备仿生材料研究进展[J]. 硅酸盐通报, 2021, 40(7): 2348-2359. |
[9] | 于明飞, 姚伦标, 卿玉长, 全京敏. 含频率选择表面耐高温吸波涂层的高温吸波性能[J]. 硅酸盐通报, 2021, 40(7): 2401-2408. |
[10] | 刘文进, 周国相, 林坤鹏, 张砚召, 赵哲, 杨治华, 贾德昌, 周玉. 基于浆料形态的陶瓷3D打印技术的浆料体系研究进展[J]. 硅酸盐通报, 2021, 40(6): 1918-1926. |
[11] | 郭金玉, 谢呵瀚, 杨小乐, 刘月明, 马征宇, 杨现锋, 谢志鹏. 凝胶3D打印制备细晶氧化铝陶瓷研究[J]. 硅酸盐通报, 2021, 40(6): 1927-1936. |
[12] | 何逸宁, 戴高尚, 吴甲民, 张洁, 潘明珠, 陈敬炎, 陈颖, 王永均, 张红星. 环氧树脂含量对激光选区烧结制备多孔煤系高岭土陶瓷性能的影响[J]. 硅酸盐通报, 2021, 40(6): 1950-1956. |
[13] | 韩卓群, 李伶, 刘时浩, 邱坤, 王守兴, 刘福田. 光固化ZrO2陶瓷料浆的流变性能研究[J]. 硅酸盐通报, 2021, 40(6): 1965-1971. |
[14] | 王新古, 孙光华, 常锦涛, 李秀峰. 电缆用陶瓷化硅橡胶复合带性能的研究[J]. 硅酸盐通报, 2021, 40(6): 2096-2103. |
[15] | 张爱菊, 李子成, 冯婧, 李志宏. 金刚石增强Na2O-B2O3-Al2O3-SiO2系陶瓷基复合材料的界面研究[J]. 硅酸盐通报, 2021, 40(5): 1666-1671. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||