硅酸盐通报 ›› 2021, Vol. 40 ›› Issue (9): 2978-2988.
周娟苹1, 历新宇1, 杨旭1, 韩顺玉2, 孟万1,2, 姜男哲1,2
收稿日期:
2021-05-22
修回日期:
2021-07-11
出版日期:
2021-09-15
发布日期:
2021-10-08
通讯作者:
孟 万,博士,教授。E-mail:mengw@ybu.edu.cn作者简介:
周娟苹(1996—),女,硕士研究生。主要从事沸石分子筛的合成及催化方面的研究。E-mail:2020010050@ybu.edu.cn
基金资助:
ZHOU Juanping1, LI Xinyu1, YANG Xu1, HAN Shunyu2, MENG Wan1,2, JIANG Nanzhe1,2
Received:
2021-05-22
Revised:
2021-07-11
Online:
2021-09-15
Published:
2021-10-08
摘要: 随着工业的不断发展,重金属污染程度日益加深,严重危害人类的健康。近年来,化学改性沸石因具有较大的比表面积和较强的离子交换能力,在重金属离子处理领域被广泛应用。然而,在化学改性过程中,由于使用酸、碱、无机盐、有机试剂等改性剂,在能耗、成本以及可持续发展方面仍存在一定弊端。因此,开展沸石化学改性方法的研究,使其简单化、工业化、绿色化,具有重要的研究意义与经济效益。本文从沸石的结构层面介绍了沸石化学改性的方法,分析了磁性沸石和纳米沸石的优异性,总结了改性沸石在去除重金属离子方面的应用,并对其未来发展趋势进行展望。
中图分类号:
周娟苹, 历新宇, 杨旭, 韩顺玉, 孟万, 姜男哲. 化学改性沸石对重金属离子去除的研究进展[J]. 硅酸盐通报, 2021, 40(9): 2978-2988.
ZHOU Juanping, LI Xinyu, YANG Xu, HAN Shunyu, MENG Wan, JIANG Nanzhe. Research Progress on Removal of Heavy Metal Ions by Chemically Modified Zeolite[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(9): 2978-2988.
[1] 马俊平,赵秋宇,王 晨,等.二氧化锰基纳米材料对重金属离子的去除及机理研究进展[J].环境化学,2020,39(3):687-703. MA J P, ZHAO Q Y, WANG C, et al. Removal of heavy metal ions by manganese dioxide-based nanomaterials and mechanism research: a review[J]. Environmental Chemistry, 2020, 39(3): 687-703 (in Chinese). [2] 于 栋,罗 庆,苏 伟,等.重金属废水电沉积处理技术研究及应用进展[J].化工进展,2020,39(5):1938-1949. YU D, LUO Q, SU W, et al. A review on research and application of electrodeposition for heavy metal wastewater treatment[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1938-1949 (in Chinese). [3] 黄子茵,管东生,王 刚.海南岛社会经济发展对红树林表层土壤重金属污染的影响[J].海洋环境科学,2020,39(6):831-837. HUANG Z Y, GUAN D S, WANG G. Heavy metal contents of mangrove surface soils affected by the social and economic development in Hainan Island[J]. Marine Environmental Science, 2020, 39(6): 831-837 (in Chinese). [4] 张 涛,阮金锴,程 巍.切削液废水处理技术研究进展[J].环境工程学报,2020,14(9):2362-2377. ZHANG T, RUAN J K, CHENG W. Progresses in the treatment processes and techniques for cutting fluid wastewater[J]. Chinese Journal of Environmental Engineering, 2020, 14(9): 2362-2377 (in Chinese). [5] JACOB J M, KARTHIK C, SARATALE R G, et al. Biological approaches to tackle heavy metal pollution: a survey of literature[J]. Journal of Environmental Management, 2018, 217: 56-70. [6] 徐兰芳,王 锋,于英豪,等.超亲水/水下超疏油膜功能材料及其研究进展[J].材料导报,2020,34(17):17105-17114. XU L F, WANG F, YU Y H, et al. Research progress on superhydrophilic/underwater superoleophobic functional membrane materials[J]. Materials Reports, 2020, 34(17): 17105-17114 (in Chinese). [7] FENG Y, YANG S M, XIA L, et al. In-situ ion exchange electrocatalysis biological coupling (i-IEEBC) for simultaneously enhanced degradation of organic pollutants and heavy metals in electroplating wastewater[J]. Journal of Hazardous Materials, 2019, 364: 562-570. [8] YANG X D, WAN Y S, ZHENG Y L, et al. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review[J]. Chemical Engineering Journal, 2019, 366: 608-621. [9] 李 荣,许 多,魏 杰,等.净水污泥与粉末活性炭复合制备吸附剂去除氨氮研究[J].环境工程,2020,38(9):95-100+112. LI R, XU D, WEI J, et al. Preparation of adsorbent by combined drinking water treatment sludge and powdered activated carbon and its ammonium removal performance[J]. Environmental Engineering, 2020, 38(9): 95-100+112 (in Chinese). [10] 曾辉平,王繁烁,于亚萍,等.壳聚糖海藻酸钠铁锰泥吸附剂制备与除As(V)研究[J].中国环境科学,2020,40(3):1146-1155. ZENG H P, WANG F S, YU Y P, et al. Preparation of chitosan-alginate adsorbent contained Fe-Mn sludge and its potential for As(V) removal[J]. China Environmental Science, 2020, 40(3): 1146-1155 (in Chinese). [11] 冉海燕,朱 叶,顾 瑶,等.季铵化壳聚糖/纳米氧化锌杂化胶体粒子的制备及性能[J].功能高分子学报,2020,33(4):390-398. RAN H Y, ZHU Y, GU Y, et al. Preparation and properties of quaternized chitosan/nano-zinc oxide hybrid colloidal particles[J]. Journal of Functional Polymers, 2020, 33(4): 390-398 (in Chinese). [12] HASSAN M, NAIDU R, DU J H, et al. Critical review of magnetic biosorbents: their preparation, application, and regeneration for wastewater treatment[J]. Science of the Total Environment, 2020, 702: 134893. [13] 张娇娇,赵 霞,张 瑞,等.三维石墨烯的制备及其吸附水中污染物的研究进展[J].化工新型材料,2020,48(8):46-49. ZHANG J J, ZHAO X, ZHANG R, et al. Progress in the preparation of 3D graphene and its adsorption of pollutant in water[J]. New Chemical Materials, 2020, 48(8): 46-49 (in Chinese). [14] BLAY V, BOBADILLA L F, GARCÍA A C. Zeolites and metal-organic frameworks[M]. Amsterdam: Amsterdam University Press, 2018. [15] VALENCIA S, REY F. New developments in adsorption/separation of small molecules by zeolites[M]. Cham: Springer International Publishing, 2020. [16] 王 灿,陈天虎,刘海波,等.纳米矿物材料净化甲醛污染的研究进展[J].材料导报,2020,34(15):15003-15012. WANG C, CHEN T H, LIU H B, et al. Research progress on application of nanominerals in formaldehyde removal[J]. Materials Reports, 2020, 34(15): 15003-15012 (in Chinese). [17] HE D W, YUAN D H, SONG Z J, et al. Eco-friendly synthesis of high silica zeolite Y with choline as green and innocent structure-directing agent[J]. Chinese Journal of Catalysis, 2019, 40(1): 52-59. [18] 李见云,崔节虎,郑宾国,等.秸秆掺杂与煅烧改性沸石吸附铜锌离子的特性[J].应用化工,2019,48(7):1558-1562. LI J Y, CUI J H, ZHENG B G, et al. Preparation of zeolite modified with doped straw and calcination and adsorption performances by Cu2+, Zn2+ in simulated wastewaters[J]. Applied Chemical Industry, 2019, 48(7): 1558-1562 (in Chinese). [19] 何春艳,张翔凌,喻 俊,等.Zn系LDHs负载改性石英砂和沸石对Cr(VI)吸附效果对比及其作用机理研究[J].环境科学学报,2019,39(2):399-409. HE C Y, ZHANG X L, YU J, et al. Study on adsorption performance and mechanism of Cr(VI) by Zn-LDHs coating on zeolites and quartz sands[J]. Acta Scientiae Circumstantiae, 2019, 39(2): 399-409 (in Chinese). [20] 霍汉鑫,林 海,董颖博,等.盐酸改性对天然斜发沸石孔道特征、成分、表面电位及阳离子交换性能的影响[J].工程科学学报,2015,37(6):746-750. HUO H X, LIN H, DONG Y B, et al. Effects of hydrochloric acid modification on the channel characteristics, composition, surface potential and cation exchange behavior of natural clinoptilolite[J]. Chinese Journal of Engineering, 2015, 37(6): 746-750 (in Chinese). [21] 彭申来,ULLAH R,白诗扬,等.斜发沸石的水热合成和离子交换性能及其在CH4/N2分离中的应用[J].石油学报(石油加工),2019,35(2):348-358. PENG S L, ULLAH R, BAI S Y, et al. Hydrothermal synthesis of clinoptilolite and its ion exchange performance for CH4/N2 separation[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35(2): 348-358 (in Chinese). [22] EBADI AMOOGHIN A, OMIDKHAH M, SANAEEPUR H, et al. Preparation and characterization of Ag+ ion-exchanged zeolite-Matrimid®5218 mixed matrix membrane for CO2/CH4 separation[J]. Journal of Energy Chemistry, 2016, 25(3): 450-462. [23] PANAYOTOVA M. Kinetics and thermodynamics of removal of nickel ions from wastewater by use of natural and modified zeolite[J]. Fresenius Environmental Bulletin, 2001, 10(3): 267-272. [24] ATES A. Role of modification of natural zeolite in removal of manganese from aqueous solutions[J]. Powder Technology, 2014, 264: 86-95. [25] LI Y R, BAI P, YAN Y, et al. Removal of Zn2+, Pb2+, Cd2+, and Cu2+ from aqueous solution by synthetic clinoptilolite[J]. Microporous and Mesoporous Materials, 2019, 273: 203-211. [26] 刘思远,郝瑞霞,王丽沙,等.分子筛脱硅对其结构与吸附氨氮性能的影响[J].中国环境科学,2019,39(12):5029-5039. LIU S Y, HAO R X, WANG L S, et al. Effect of molecular sieve desilication on its structure and adsorption of ammonia nitrogen[J]. China Environmental Science, 2019, 39(12): 5029-5039 (in Chinese). [27] 张晓晓,徐文鹏,徐 军,等.碱酸处理ZSM-22分子筛催化剂的MTO性能研究[J].应用化工,2019,48(7):1516-1520. ZHANG X X, XU W P, XU J, et al. Study on the performance of alkaline acid treatment ZSM-22 catalysts for MTO reaction[J]. Applied Chemical Industry, 2019, 48(7): 1516-1520 (in Chinese). [28] 勾明雷,王俊锴,宋文生.介孔ZSM-5沸石外表面酸性位选择性钝化及其催化性能[J].硅酸盐学报,2020,48(12):1960-1965. GOU M L, WANG J K, SONG W S. Mesoporous ZSM-5 zeolites with external acid sites selective passivation and their catalytic performances[J]. Journal of the Chinese Ceramic Society, 2020, 48(12): 1960-1965 (in Chinese). [29] 王宝宇,杨仁发,艾 胜,等.多级孔沸石催化合成聚甲氧基二甲醚[J].石油化工,2020,49(4):327-332. WANG B Y, YANG R F, AI S, et al. Synthesis of polyoxymethylene dimethyl ethers catalyzed by hierarchical zeolite[J]. Petrochemical Technology, 2020, 49(4): 327-332 (in Chinese). [30] 王德举,刘仲能,李学礼,等.介孔沸石材料[J].化学进展,2008,20(5):637-643. WANG D J, LIU Z N, LI X L, et al. Mesoporous zeolite materials[J]. Progress in Chemistry, 2008, 20(5): 637-643 (in Chinese). [31] AGHEL B, MOHADESI M, GOURAN A, et al. Use of modified Iranian clinoptilolite zeolite for cadmium and lead removal from oil refinery wastewater[J]. International Journal of Environmental Science and Technology, 2020, 17(3): 1239-1250. [32] ADINEHVAND J, SHOKUHI RAD A, TEHRANI A S. Acid-treated zeolite (clinoptilolite) and its potential to zinc removal from water sample[J]. International Journal of Environmental Science and Technology, 2016, 13(11): 2705-2712. [33] 张 泽,程 军,仇 亿,等.碱处理脱硅介孔分子筛催化脱氧断键制生物航油研究[J].化工学报,2019,70(8):2919-2927. ZHANG Z, CHENG J, QIU Y, et al. Hydrodeoxygenation and hydrocracking to produce jet biofuel catalyzed by mesoporous zeolite desilicated with NaOH treatment[J]. CIESC Journal, 2019, 70(8): 2919-2927 (in Chinese). [34] 张 健,万东锦,刘永德,等.碱改性ZSM-5沸石分子筛吸附去除水中Pb2+的研究[J].环境工程技术学报,2015,5(4):277-283. ZHANG J, WAN D J, LIU Y D, et al. Alkali treatment of ZSM-5 molecular sieve and its adsorptive performance of Pb2+ from aqueous solution[J]. Journal of Environmental Engineering Technology, 2015, 5(4): 277-283 (in Chinese). [35] ATES A, AKG ÜL G. Modification of natural zeolite with NaOH for removal of manganese in drinking water[J]. Powder Technology, 2016, 287: 285-291. [36] GILI M B Z, OLEGARIO E M. Effects of γ-irradiation on the Cu2+ sorption behaviour of NaOH-modified Philippine natural zeolites[J]. Clay Minerals, 2020, 55(3): 248-255. [37] JIMÉNEZ-CASTAÑEDA M, MEDINA D. Use of surfactant-modified zeolites and clays for the removal of heavy metals from water[J]. Water, 2017, 9(4): 235. [38] ELSHEIKH A F, AHMAD U K, RAMLI Z. Investigations on humic acid removal from water using surfactant-modified zeolite as adsorbent in a fixed-bed reactor[J]. Applied Water Science, 2017, 7(6): 2843-2856. [39] HAILU S L, NAIR B U, REDI-ABSHIRO M, et al. Preparation and characterization of cationic surfactant modified zeolite adsorbent material for adsorption of organic and inorganic industrial pollutants[J]. Journal of Environmental Chemical Engineering, 2017, 5(4): 3319-3329. [40] ONYANGO M, KITTINYA J, HADEBE N, et al. Sorption of melanoidin onto surfactant modified zeolite[J]. Chemical Industry and Chemical Engineering Quarterly, 2011, 17(4): 385-395. [41] SZALA B, BAJDA T, JELEŃ A. Removal of chromium(VI) from aqueous solutions using zeolites modified with HDTMA and ODTMA surfactants[J]. Clay Minerals, 2015, 50(1): 103-115. [42] ZEKAVAT S R, RAOUF F, TALESH S S A. Simultaneous adsorption of Cu2+ and Cr(VI) using HDTMA-modified zeolite: isotherm, kinetic, mechanism, and thermodynamic studies[J]. Water Science and Technology, 2020, 82(9): 1808-1824. [43] REN H X, JIANG J H, WU D J, et al. Selective adsorption of Pb(II) and Cr(VI) by surfactant-modified and unmodified natural zeolites: a comparative study on kinetics, equilibrium, and mechanism[J]. Water, Air, & Soil Pollution, 2016, 227(4): 1-11. [44] KAEWPRACHUM W, WONGSAKULPHASATCH S, KIATKITTIPONG W, et al. SDS modified mesoporous silica MCM-41 for the adsorption of Cu2+, Cd2+, Zn2+ from aqueous systems[J]. Journal of Environmental Chemical Engineering, 2020, 8(1): 102920. [45] TILAMI S E, AZIZI S N. Methionine templated analcime for enhancing heavy metal adsorption[J]. ScienceAsia, 2017, 43(1): 42-46. [46] ZHANG S Q, LV T, MU Y, et al. High adsorption of Cd(II) by modification of synthetic zeolites Y, A and mordenite with thiourea[J]. Chinese Journal of Chemical Engineering, 2020, 28(12): 3117-3125. [47] LEYVA-RAMOS R, JACOBO-AZUARA A, DIAZ-FLORES P E, et al. Adsorption of chromium(VI) from an aqueous solution on a surfactant-modified zeolite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 330(1): 35-41. [48] CHEN F Y, HONG M Z, YOU W J, et al. Simultaneous efficient adsorption of Pb2+ and MnO-4 ions by MCM-41 functionalized with amine and nitrilotriacetic acid anhydride[J]. Applied Surface Science, 2015, 357: 856-865. [49] JAVADIAN H, TAGHAVI M. Application of novel polypyrrole/thiol-functionalized zeolite Beta/MCM-41 type mesoporous silica nanocomposite for adsorption of Hg2+ from aqueous solution and industrial wastewater: kinetic, isotherm and thermodynamic studies[J]. Applied Surface Science, 2014, 289: 487-494. [50] 刘 帆,张荣斌,王 飞,等.鸟粪石-沸石复合材料对水中镉的吸附性能研究[J].环境科学学报,2019,39(9):2988-2996. LIU F, ZHANG R B, WANG F, et al. Adsorption of cadmium onto struvite-zeolite composite in aqueous solution[J]. Acta Scientiae Circumstantiae, 2019, 39(9): 2988-2996 (in Chinese). [51] 马文婕,陈天虎,陈 冬,等.δ-MnO2/沸石纳米复合材料同时去除地下水中的铁锰氨氮[J].环境科学,2019,40(10):4553-4561. MA W J, CHEN T H, CHEN D, et al. Removal of Fe(Ⅱ), Mn(Ⅱ), and NH+4-N by using δ-MnO2 coated zeolite[J]. Environmental Science, 2019, 40(10): 4553-4561 (in Chinese). [52] 刘 红,程 顺,李春侠,等.凹凸棒土负载硫化纳米零价铁的制备及其去除水中As(Ⅲ)性能研究[J].武汉科技大学学报,2020,43(1):30-36. LIU H, CHENG S, LI C X, et al. Preparation of attapulgite-loaded sulfide-modified nanoscale zero-valent iron and its adsorption of As(Ⅲ) from aqueous solution[J]. Journal of Wuhan University of Science and Technology, 2020, 43(1): 30-36 (in Chinese). [53] ZHAO S F, FAN X, YANG J S, et al. Enhanced removal of Cr(VI) from wastewater by nanoscale zero valent iron supported on layered double hydroxides[J]. Journal of Porous Materials, 2020, 27(6): 1701-1710. [54] ZHANG X L, SONG Z, DOU Y K, et al. Removal difference of Cr(VI) by modified zeolites coated with MgAl and ZnAl-layered double hydroxides: efficiency, factors and mechanism[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 621: 126583. [55] KRSTIĆ N S, DIMITRIJEVIĆ V D, et al. Zero-valent iron nickel modified natural zeolite material: characterization and environmental aspect of application-first results[J]. Studia Universitatis Babeş-Bolyai Chemia, 2021, 66(1): 23-34. [56] 王 晶.GO-4A分子筛复合材料的制备及吸附性能研究[D].西安:西安工程大学,2019. WANG J. Preparation and adsorption properties of GO-4A zeolite composites[D]. Xi’an: Xi’an Polytechnic University, 2019 (in Chinese). [57] BAHIRAEI A, BEHIN J. Sonochemical immobilization of MnO2 nanoparticles on NaP-zeolite for enhanced Hg(II) adsorption from water[J]. Journal of Environmental Chemical Engineering, 2020, 8(3): 103790. [58] LV G, LI Z H, JIANG W T, et al. Removal of Cr(VI) from water using Fe(II)-modified natural zeolite[J]. Chemical Engineering Research and Design, 2014, 92(2): 384-390. [59] 毕薇薇,陈 娅,马晓雁,等.磁性有序介孔碳的制备及其对水中双酚A的吸附[J].中国环境科学,2020,40(11):4762-4769. BI W W, CHEN Y, MA X Y, et al. Synthesis of magnetic ordered mesoporous carbon and its adsorption of bisphenol A in water[J]. China Environmental Science, 2020, 40(11): 4762-4769 (in Chinese). [60] AMJADI M, SAMADI A, MANZOORI J L. A composite prepared from halloysite nanotubes and magnetite (Fe3O4) as a new magnetic sorbent for the preconcentration of cadmium(II) prior to its determination by flame atomic absorption spectrometry[J]. Microchimica Acta, 2015, 182(9/10): 1627-1633. [61] OLIVEIRA L C A, PETKOWICZ D I, SMANIOTTO A, et al. Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water[J]. Water Research, 2004, 38(17): 3699-3704. [62] PARIS E C, MALAFATTI J O D, MUSETTI H C, et al. Faujasite zeolite decorated with cobalt ferrite nanoparticles for improving removal and reuse in Pb2+ ions adsorption[J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1884-1890. [63] PENG Z D, LIN X M, ZHANG Y L, et al. Removal of cadmium from wastewater by magnetic zeolite synthesized from natural, low-grade molybdenum[J]. Science of the Total Environment, 2021, 772: 145355. [64] KRAGOVIĆ M, DAKOVIĆ A, MARKOVIĆ M, et al. Characterization of lead sorption by the natural and Fe(Ⅲ)-modified zeolite[J]. Applied Surface Science, 2013, 283: 764-774. [65] 张振国,张铭栋,顾 平,等.沸石材料吸附水中放射性锶和铯的研究进展[J].化工进展,2019,38(4):1984-1995. ZHANG Z G, ZHANG M D, GU P, et al. Progress in adsorption of radioactive strontium and cesium from aqueous solution on zeolite materials[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1984-1995 (in Chinese). [66] 艾 沙·努拉洪,方亚平,高希然,等.不同晶粒ZSM-5沸石分子筛对合成气羰基化反应性能的影响[J].分子催化,2020,34(2):105-115. NULAHONG A S, FANG Y P, GAO X R, et al. Effect of ZSM-5 zeolites with different grains on carbonylation of syngas[J]. Journal of Molecular Catalysis (China), 2020, 34(2): 105-115 (in Chinese). [67] LI X, SHEN W L. The influence of pore structure on reaction mechanism of propylene dimerization in zeolite: a theoretical viewpoint[J]. International Journal of Quantum Chemistry, 2019, 119(16): e25962. [68] 亢玉红,李 健,高平强,等.利用粉煤灰基X型沸石去除废水中的铜离子[J].材料科学与工程学报,2018,36(6):975-980. KANG Y H, LI J, GAO P Q, et al. Removal of Cu2+ from waste water with zeolite X synthesized by coal fly ash[J]. Journal of Materials Science and Engineering, 2018, 36(6): 975-980 (in Chinese). [69] 彭利冲,李素芹.Na-X分子筛对Cu(Ⅱ)吸附性能研究[J].人工晶体学报,2018,47(9):1803-1810. PENG L C, LI S Q. Study on adsorption properties of Cu(Ⅱ) on Na-X zeolite[J]. Journal of Synthetic Crystals, 2018, 47(9): 1803-1810 (in Chinese). [70] LUO H W, LAW W W, WU Y C, et al. Hydrothermal synthesis of needle-like nanocrystalline zeolites from metakaolin and their applications for efficient removal of organic pollutants and heavy metals[J]. Microporous and Mesoporous Materials, 2018, 272: 8-15. [71] YILMAZ Y. NaX nano-taneciklerin ağır metal ve boyar maddelere karşı adsorpsiyon kapasitelerinin belirlenmesi[J]. Journal of the Faculty of Engineering and Architecture of Gazi University, 2019, 34 (4): 2113-2124. [72] GONCALVES M B, SCHMIDT D V C, DOS SANTOS F S, et al. Nanostructured faujasite zeolite as metal ion adsorbent: kinetics, equilibrium adsorption and metal recovery studies[J]. Water Science and Technology, 2021, 83(2): 358-371. |
[1] | 王信刚, 陈涛, 赵华, 李玉洁. 二乙醇单异丙醇胺-三异丙醇胺激发沸石粉后期活性机理研究[J]. 硅酸盐通报, 2021, 40(9): 2891-2897. |
[2] | 力国民, 苏宁静, 朱保顺, 梁丽萍, 田玉明. 利用煤矸石制备Fe3O4和Fe负载的微波吸收材料[J]. 硅酸盐通报, 2021, 40(9): 2998-3004. |
[3] | 舒世立, 陈伟, 贾献峰, 王磊. CTAB改性铁柱撑膨润土对苯酚的吸附[J]. 硅酸盐通报, 2021, 40(9): 3046-3052. |
[4] | 曹文龙, 黄友奇, 臧曙光, 祖成奎, 欧迎春, 刘超英, 许少坤, 杨幼然. 热处理温度对铁镍合金膜层微观结构和镀膜玻璃性能的影响[J]. 硅酸盐通报, 2021, 40(9): 3152-3158. |
[5] | 崔家新, 王连勇, 张坤, 孙延文, 韩建丽. 粉煤灰基沸石处理氮磷废水的研究进展[J]. 硅酸盐通报, 2021, 40(8): 2622-2630. |
[6] | 徐泽忠, 邹慧, 曹显志, 吴阳, 韩成良. SiO2/g-C3N4复合粉体制备及其光催化性能[J]. 硅酸盐通报, 2021, 40(8): 2748-2754. |
[7] | 桂若铭, 廖宜顺, 黄浩然. 沸石粉对硫铝酸盐水泥水化行为的影响机理研究[J]. 硅酸盐通报, 2021, 40(7): 2138-2144. |
[8] | 崔艳红, 孙鹏, 汪颖军, 所艳华, 张微, 王彦宏. 乙醇辅助氨基改性NCR-MCM-48分子筛的制备及其对Cr(VI)的吸附性能[J]. 硅酸盐通报, 2021, 40(6): 2118-2128. |
[9] | 赵雯, 李函霏, 吴畏. 油页岩灰渣合成P型沸石及对Co2+吸附性研究[J]. 硅酸盐通报, 2021, 40(5): 1720-1727. |
[10] | 傅金祥, 张延平, 李森, 由昆, 范冬晗, 李欣. 改性沸石氨氮吸附剂的制备及其在生活污水处理中的应用[J]. 硅酸盐通报, 2021, 40(5): 1728-1734. |
[11] | 兰波, 何智海, 胡海波, WOLDERUFAEL Yirgalemfissiha, 杨莹, 韩旭东. 沸石粉取代部分硅灰的超高性能混凝土力学性能研究[J]. 硅酸盐通报, 2021, 40(3): 792-800. |
[12] | 胡盛, 张明浩, 胡卫兵. 反应时间对镁铝水滑石制备及其吸附性能的影响[J]. 硅酸盐通报, 2021, 40(3): 1022-1028. |
[13] | 闫雷, 张涛, 黎佳全, 巩柯语, 苗洋, 高峰. 微波辐照煤系高岭土及其吸油性能[J]. 硅酸盐通报, 2021, 40(2): 527-533. |
[14] | 陈彦广, 孙杰, 吴晓辉, 张亚男, 邓冀童, 韩洪晶, 张梅, 关金双. 钴掺杂NaP分子筛合成及其吸附Pb(II)性能[J]. 硅酸盐通报, 2021, 40(2): 653-657. |
[15] | 孙恩禹, 陈啸洋. 天然沸石粉对氯氧镁水泥耐水性影响研究[J]. 硅酸盐通报, 2021, 40(1): 41-47. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||