[1] TIAN Y, JIN N G, JIN X Y. Coupling effect of temperature and relative humidity diffusion in concrete under ambient conditions[J]. Construction and Building Materials, 2018, 159: 673-689. [2] ZHANG D S, MAO M J, ZHANG S R, et al. Influence of stress damage and high temperature on the freeze-thaw resistance of concrete with fly ash as fine aggregate[J]. Construction and Building Materials, 2019, 229: 116845. [3] LI K F, LI C Q, CHEN Z Y. Influential depth of moisture transport in concrete subject to drying-wetting cycles[J]. Cement and Concrete Composites, 2009, 31(10): 693-698. [4] ZHANG J, GAO Y, HAN Y D, et al. Shrinkage and interior humidity of concrete under dry-wet cycles[J]. Drying Technology, 2012, 30(6): 583-596. [5] 刘 鹏,宋 力,余志武.模拟干湿环境对混凝土内水分影响深度的影响[J].华南理工大学学报(自然科学版),2014,42(2):64-73. LIU P, SONG L, YU Z W. Effect of simulated drying-wetting environment on water influence depth in concrete[J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42(2): 64-73 (in Chinese). [6] CHEN D P, ZOU J J, ZHAO L, et al. Degradation of dynamic elastic modulus of concrete under periodic temperature-humidity action[J]. Materials, 2020, 13(3): 611. [7] SONG Y, WU Q E, AGOSTINI F, et al. Concrete shrinkage and creep under drying/wetting cycles[J]. Cement and Concrete Research, 2021, 140: 106308. [8] 库马·梅塔(P.Kumar Mehta),保罗J.M.蒙特罗(Paulo J.M.Monteiro).混凝土:微观结构、性能和材料[M].覃维祖,王栋民,丁建彤,译.北京:中国电力出版社,2008. KUMAR M P, PAULO J M M. Concrete: microstructure, properties and materials[M]. QIN W Z, WANG D M, DING J T, trans. Beijing: China Electric Power Press, 2008 (in Chinese). [9] 王静薇.混凝土细微观结构与强度的关系[D].杭州:浙江大学,2007. WANG J W. The relationship between mesostructure/microstructure and the strength of concrete[D]. Hangzhou: Zhejiang University, 2007 (in Chinese). [10] 王海龙,董宜森,孙晓燕,等.干湿交替环境下混凝土受硫酸盐侵蚀劣化机理[J].浙江大学学报(工学版),2012,46(7):1255-1261. WANG H L, DONG Y S, SUN X Y, et al. Damage mechanism of concrete deteriorated by sulfate attack in wet-dry cycle environment[J]. Journal of Zhejiang University (Engineering Science), 2012, 46(7): 1255-1261 (in Chinese). [11] 高润东,赵顺波,李庆斌,等.干湿循环作用下混凝土硫酸盐侵蚀劣化机理试验研究[J].土木工程学报,2010,43(2):48-54. GAO R D, ZHAO S B, LI Q B, et al. Experimental study of the deterioration mechanism of concrete under sulfate attack in wet-dry cycles[J]. China Civil Engineering Journal, 2010, 43(2): 48-54 (in Chinese). [12] 余振新,高建明,宋鲁光,等.荷载-干湿交替-硫酸盐耦合作用下混凝土损伤过程[J].东南大学学报(自然科学版),2012,42(3):487-491. YU Z X, GAO J M, SONG L G, et al. Damage process of concrete exposed to sulfate attack under drying-wetting cycles and loading[J]. Journal of Southeast University (Natural Science Edition), 2012, 42(3): 487-491 (in Chinese). [13] 蔡 健,李名铠,陈庆军,等.干湿循环下受弯钢筋混凝土梁的氯盐侵蚀[J].中南大学学报(自然科学版),2019,50(11):2840-2850. CAI J, LI M K, CHEN Q J, et al. Chloride ingression in reinforced concrete beams subjected to flexural loading under cyclic drying-wetting condition[J]. Journal of Central South University (Science and Technology), 2019, 50(11): 2840-2850 (in Chinese). [14] SAHMARAN M, ERDEM T K, YAMAN I O. Sulfate resistance of plain and blended cements exposed to wetting-drying and heating-cooling environments[J]. Construction and Building Materials, 2007, 21(8): 1771-1778. [15] ZHANG G H, LI Z L, ZHANG L F, et al. Experimental research on drying control condition with minimal effect on concrete strength[J]. Construction and Building Materials, 2017, 135: 194-202. [16] NIU X J, LI Q B, LIU W J, et al. Effects of ambient temperature, relative humidity and wind speed on interlayer properties of dam concrete[J]. Construction and Building Materials, 2020, 260: 119791. [17] 庞超明,徐 剑,王 进,等.混凝土干湿过程及循环制度的研究[J].建筑材料学报,2013,16(2):315-320. PANG C M, XU J, WANG J, et al. Investigation of the process and regime of drying and wetting of concrete[J]. Journal of Building Materials, 2013, 16(2): 315-320 (in Chinese). [18] 谭 聪,李宗利,韩进生,等.不同强度等级和尺寸混凝土自由吸水规律研究[J].混凝土,2019(11):34-38. TAN C, LI Z L, HAN J S, et al. Study on free absorption of concrete with different strength grades and sizes[J]. Concrete, 2019(11): 34-38 (in Chinese). [19] 韩进生,李宗利,张国辉,等.不同强度等级混凝土等温干燥脱水规律[J].建筑材料学报,2018,21(6):963-968. HAN J S, LI Z L, ZHANG G H, et al. Isothermal drying and dehydration of concrete with different strength grades[J]. Journal of Building Materials, 2018, 21(6): 963-968 (in Chinese). [20] DU X Q, LI Z L, HAN J J, et al. Effect of different humidity-controlling modes on microstructure and compressive behavior of ordinary concrete[J]. Journal of Materials in Civil Engineering, 2020, 32(1): 04019337. [21] LASKAR M A I, KUMAR R, BHATTACHARJEE B. Some aspects of evaluation of concrete through mercury intrusion porosimetry[J]. Cement and Concrete Research, 1997, 27(1): 93-105. [22] 吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999. WU Z W, LIAN H Z. High performance concrete[M]. Beijing: China Railway Publishing House, 1999 (in Chinese). |