[1] LIU Y H, KONG L N, GUO X, et al. Surface oxygen vacancies on WO3 nanoplate arrays induced by Ar plasma treatment for efficient photoelectrochemical water oxidation[J]. Journal of Physics and Chemistry of Solids, 2021, 149: 109823. [2] KUDO A, MISEKI Y. Heterogeneous photocatalyst materials for water splitting[J]. Chemical Society Reviews, 2009, 38(1): 253-278. [3] HUANG J W, YUE P F, WANG L, et al. A review on tungsten-trioxide-based photoanodes for water oxidation[J]. Chinese Journal of Catalysis, 2019, 40(10): 1408-1420. [4] WANG Y D, TIAN W, CHEN C, et al. Tungsten trioxide nanostructures for photoelectrochemical water splitting: material engineering and charge carrier dynamic manipulation[J]. Advanced Functional Materials, 2019, 29(23): 1809036. [5] SHIVADE R K, KUNDU A, CHAKRABORTY B. Room temperature d0 ferromagnetism in nitrogen doped WO3 for spintronic applications: a first-principles study[J]. Chemical Physics Letters, 2021, 762: 138075. [6] LIU Y Y, LI Y, LI W Z, et al. Photoelectrochemical properties and photocatalytic activity of nitrogen-doped nanoporous WO3 photoelectrodes under visible light[J]. Applied Surface Science, 2012, 258(12): 5038-5045. [7] LI W Z, LI J, WANG X, et al. Preparation and water-splitting photocatalytic behavior of S-doped WO3[J]. Applied Surface Science, 2012, 263: 157-162. [8] YANG B, LUCA V. Enhanced long-wavelength transient photoresponsiveness of WO3 induced by tellurium doping[J]. Chemical Communications (Cambridge, England), 2008(37): 4454-4456. [9] GOVINDARAJ T, MAHENDRAN C, MARNADU R, et al. The remarkably enhanced visible-light-photocatalytic activity of hydrothermally synthesized WO3 nanorods: an effect of Gd doping[J]. Ceramics International, 2021, 47(3): 4267-4278. [10] LIU H J, PENG T Y, KE D N, et al. Preparation and photocatalytic activity of dysprosium doped tungsten trioxide nanoparticles[J]. Materials Chemistry and Physics, 2007, 104(2/3): 377-383. [11] ABE R, TAKAMI H, MURAKAMI N, et al. Pristine simple oxides as visible light driven photocatalysts: highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide[J]. Journal of the American Chemical Society, 2008, 130(25): 7780-7781. [12] XIANG Q, MENG G F, ZHAO H B, et al. Au nanoparticle modified WO3 nanorods with their enhanced properties for photocatalysis and gas sensing[J]. The Journal of Physical Chemistry C, 2010, 114(5): 2049-2055. [13] SUN S M, WANG W Z, ZENG S Z, et al. Preparation of ordered mesoporous Ag/WO3 and its highly efficient degradation of acetaldehyde under visible-light irradiation[J]. Journal of Hazardous Materials, 2010, 178(1/2/3): 427-433. [14] PING Y, LI Y, GYGI F, et al. Tungsten oxide clathrates for water oxidation: a first principles study[J]. Chemistry of Materials, 2012, 24(21): 4252-4260. [15] MI Q, PING Y, LI Y, et al. Thermally stable N2-intercalated WO3 photoanodes for water oxidation[J]. Journal of the American Chemical Society, 2012, 134(44): 18318-18324. [16] LI D, TAKEUCHI R, CHANDRA D, et al. Visible light-driven water oxidation on an in situ N2-intercalated WO3 nanorod photoanode synthesized by a dual-functional structure-directing agent[J]. ChemSusChem, 2018, 11(7): 1151-1156. [17] LI D, CHANDRA D, TAKEUCHI R, et al. Dual-functional surfactant-templated strategy for synthesis of an in situ N2-intercalated mesoporous WO3 photoanode for efficient visible-light-driven water oxidation[J]. Chemistry-A European Journal, 2017, 23(27): 6596-6604. [18] 李文章.WO3基纳米结构薄膜电极的制备、表征及其光电化学性质研究[D].长沙:中南大学,2011. LI W Z. Preparation and characterization of WO3 nanostructured photoelectrodes and their photoelectrochemical properties[D]. Changsha: Central South University, 2011 (in Chinese). [19] SANTATO C, ODZIEMKOWSKI M, ULMANN M, et al. Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications[J]. Journal of the American Chemical Society, 2001, 123(43): 10639-10649. [20] 李 东,高彩云.高氧化效率的纳米WO3水氧化光阳极的制备及表征[J].现代化工,2020,40(3):147-151. LI D, GAO C Y. Preparation and characterization of nano-WO3 photoanode for highly efficient oxidation of water[J]. Modern Chemical Industry, 2020, 40(3): 147-151 (in Chinese). [21] DJAOUED Y, BALAJI S, BRÜNING R. Electrochromic devices based on porous tungsten oxide thin films[J]. Journal of Nanomaterials, 2012, 2012: 1-9. [22] BALAJI S, DJAOUED Y, ALBERT A S, et al. Hexagonal tungsten oxide based electrochromic devices: spectroscopic evidence for the Li ion occupancy of four-coordinated square windows[J]. Chemistry of Materials, 2009, 21(7): 1381-1389. [23] SZILÁGYI I M, FÓRIZS B, ROSSELER O, et al. WO3 photocatalysts: influence of structure and composition[J]. Journal of Catalysis, 2012, 294: 119-127. [24] TESSIER F, LE GENDRE L, CHEVIRE F, et al. Thermochemistry of a new class of materials containing dinitrogen pairs in an oxide matrix[J]. ChemInform, 2005, 36(39): 3570-3574. [25] EBBINGHAUS S G, ABICHT H P, DRONSKOWSKI R, et al. Perovskite-related oxynitrides-recent developments in synthesis, characterisation and investigations of physical properties[J]. Progress in Solid State Chemistry, 2009, 37(2/3): 173-205. [26] RACHEL A, EBBINGHAUS S G, GüNGERICH M, et al. Tantalum and niobium perovskite oxynitrides: synthesis and analysis of the thermal behaviour[J]. Thermochimica Acta, 2005, 438(1/2): 134-143. [27] LIU Y Y, LI Y, LI W Z, et al. Photoelectrochemical properties and photocatalytic activity of nitrogen-doped nanoporous WO3 photoelectrodes under visible light[J]. Applied Surface Science, 2012, 258(12): 5038-5045. [28] GHICOV A, MACAK J M, TSUCHIYA H, et al. Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes[J]. Nano Letters, 2006, 6(5): 1080-1082. [29] SAHA N C, TOMPKINS H G. Titanium nitride oxidation chemistry: an X-ray photoelectron spectroscopy study[J]. Journal of Applied Physics, 1992, 72(7): 3072-3079. |