[1] 孔令军,赵祥麟,刘广龙.红土镍矿冶炼镍铁废渣环境安全性能研究[J].铜业工程,2014(1):61-64. KONG L J, ZHAO X L, LIU G L. Research on environment safety of the laterite nickel ore smelting ferro-nickel slag[J]. Copper Engineering, 2014(1): 61-64 (in Chinese). [2] 朱恩欢,林云腾,龚 涵,等.高炉镍铁渣粉对混凝土性能的影响[J].混凝土与水泥制品,2017(12):97-99. ZHU E H, LIN Y T, GONG H, et al. Influence of ground ferronickel-granulated blast furnace slag on the performance of concrete[J]. China Concrete and Cement Products, 2017(12): 97-99 (in Chinese). [3] 沈 凡,庞若楠,韦国苏,等.掺钢渣再生沥青混凝土的制备及路用性能研究[J].中外公路,2020,40(3):231-237. SHEN F, PANG R N, WEI G S, et al. Production and road performance of recycled asphalt concrete with steel slag[J]. Journal of China & Foreign Highway, 2020, 40(3): 231-237 (in Chinese). [4] 林云腾.高炉镍铁渣粉对路面混凝土性能的影响[J].福建建设科技,2017(5):70-72. LIN Y T. The influence of ferronickel-granulated slag on the pavement concrete performance[J]. Fujian Construction Science & Technology, 2017(5): 70-72 (in Chinese). [5] 朋改非,杨 娟,石云兴.超高性能混凝土高温后残余力学性能试验研究[J].土木工程学报,2017,50(4):73-79. PENG G F, YANG J, SHI Y X. Experimental study on residual mechanical properties of ultra-high performance concrete exposed to high temperature[J]. China Civil Engineering Journal, 2017, 50(4): 73-79 (in Chinese). [6] 贺一轩,杜红秀.混掺纤维RPC高温后剩余抗压强度及超声检测[J].玻璃钢/复合材料,2019(8):78-81. HE Y X, DU H X. Residual compressive strength and ultrasonic testing after mixing fiber rpc at elevated temperature[J]. Fiber Reinforced Plastics/Composites, 2019(8): 78-81 (in Chinese). [7] 杨 婷,刘中宪,杨烨凯,等.超高性能混凝土高温后性能试验研究[J].土木与环境工程学报(中英文),2020,42(3):115-126. YANG T, LIU Z X, YANG Y K, et al. Experimental investigation on behavior of ultra-high performance concrete after high temperature[J]. Journal of Civil and Environmental Engineering, 2020, 42(3): 115-126 (in Chinese). [8] 杜 咏,严奥宇,戚洪辉.纤维增强超高强混凝土防高温爆裂研究[J].建筑材料学报,2021,24(1):216-223. DU Y, YAN A Y, QI H H. Spalling prevention of fibre reinforced ultra-high strength concrete(FRUHSC) subject to high temperature[J]. Journal of Building Materials, 2021, 24(1): 216-223 (in Chinese). [9] 李 妍,赫 岩.工业回收钢纤维混凝土高温后力学性能试验研究[J].吉林建筑大学学报,2019,36(2):13-17. LI Y, HE Y. Experimental study on mechanical properties of industrial recycled steel fiber concrete after high temperature[J]. Journal of Jilin Jianzhu University, 2019, 36(2): 13-17 (in Chinese). [10] 王 申,李保亮,曹瑞林,等.镍铁渣混凝土的力学性能、干缩行为及其与浆体孔结构的关系[J].混凝土与水泥制品,2020(1):1-5. WANG S, LI B L, CAO R L, et al. Mechanical properties, drying shrinkage and their relation with pore structure of concrete with ferronickel slag[J]. China Concrete and Cement Products, 2020(1): 1-5 (in Chinese). [11] PENG G, YANG J. Residual mechanical properties and explosive spalling behavior of ultra-high-strength concrete exposed to high temperature[J]. Journal of Harbin Institute of Technology, 2017, 24(4): 62-70. [12] 陈伟强,靖洪文,高 远,等.高温后混凝土损伤评估的声发射试验研究[J].混凝土,2020(3):54-58. CHEN W Q, JING H W, GAO Y, et al. AE test study on damage evaluation of concrete after high temperature treatment[J]. Concrete, 2020(3): 54-58 (in Chinese). [13] 纪洪广,张天森,蔡美峰,等.混凝土材料损伤的声发射动态检测试验研究[J].岩石力学与工程学报,2000,19(2):165-168. JI H G, ZHANG T S, CAI M F, et al. Experimental study on concrete damage by dynamic measurement of acoustic emission[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(2): 165-168 (in Chinese). [14] 张东华.基于田口方法的聚丙烯纤维增强混凝土高温损伤后性能研究[J].中外公路,2019,39(2):232-236. ZHANG D H. Study on the properties of polypropylene fiber reinforced concrete after high temperature based on taguchi method[J]. Journal of China & Foreign Highway, 2019, 39(2): 232-236 (in Chinese). |