[1] CHE J L, WANG D, LIU H F, et al. Mechanical properties of desert sand-based fiber reinforced concrete (DS-FRC)[J]. Applied Sciences, 2019, 9(9): 1857. [2] 李志强,王国庆,杨 森,等.沙漠砂混凝土力学性能及应力-应变本构关系试验研究[J].应用力学学报,2019,36(5):1131-1137+1261. LI Z Q, WANG G Q, YANG S, et al. Experimental study on mechanical properties and stress-strain constitutive relations of desert sand concrete[J]. Chinese Journal of Applied Mechanics, 2019, 36(5): 1131-1137+1261 (in Chinese). [3] 张广泰,黄伟敏,郭 锐.沙漠砂锂渣聚丙烯纤维混凝土基本力学性能试验研究[J].科学技术与工程,2016,16(24):273-278. ZHANG G T, HUANG W M, GUO R. Experimental study on basic mechanical properties of the desert sand concrete with lithium slag and polypropylene fiber[J]. Science Technology and Engineering, 2016, 16(24): 273-278 (in Chinese). [4] KACHOUH N, EL-HASSAN H, EL-MAADDAWY T. Effect of steel fibers on the performance of concrete made with recycled concrete aggregates and dune sand[J]. Construction and Building Materials, 2019, 213: 348-359. [5] LIU H F, CHEN X L, CHE J L, et al. Mechanical performances of concrete produced with desert sand after elevated temperature[J]. International Journal of Concrete Structures and Materials, 2020, 14(1): 1-15. [6] ZOU Y X, SHEN X D, ZUO X B, et al. Experimental study on microstructure evolution of aeolian sand concrete under the coupling freeze-thaw cycles and carbonation[J]. European Journal of Environmental and Civil Engineering, 2020: 1-16. [7] 孙家瑛.纤维混凝土抗冻性能研究[J].建筑材料学报,2013,16(3):437-440. SUN J Y. Frost resistance characteristics of fiber concrete[J]. Journal of Building Materials, 2013, 16(3): 437-440 (in Chinese). [8] 程红强,高丹盈.聚丙烯纤维混凝土冻融损伤试验研究[J].东南大学学报(自然科学版),2010,40(s2):197-200. CHENG H Q, GAO D Y. Experimental study on damage of polypropylene fiber concrete in freeze-thaw cycles[J]. Journal of Southeast University (Natural Science Edition), 2010, 40(s2): 197-200 (in Chinese). [9] 黄伟敏.沙漠砂锂渣聚丙烯纤维混凝土力学性能及耐久性试验研究[D].乌鲁木齐:新疆大学,2017. HUANG W M. Experimental study on basic mechanical properties and durability of the desert sand concrete with lithium slag and polypropylene fiber[D]. Urumqi: Xinjiang University, 2017 (in Chinese). [10] 中华人民共和国住房和城乡建设部.普通混凝土长期性能和耐久性能试验方法标准:GB/T 50082—2009[S].北京:中国建筑工业出版社,2009. Ministry of Housing and Urban-Rural Development, PRC.Standard test method for long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Architecture and Building Press, 2009 (in Chinese). [11] 乔宏霞,李江川,路承功,等.纤维掺加方式对混凝土抗冻性能的影响[J].硅酸盐通报,2019,38(2):495-500. QIAO H X, LI J C, LU C G, et al. Effect of fiber addition method on frost resistance of concrete[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(2): 495-500 (in Chinese). [12] 靳贺松,李福海,何肖云峰,等.聚丙烯纤维水泥基复合材料的抗冻性能研究[J].材料导报,2020,34(8):8071-8076+8082. JIN H S, LI F H, HE X Y F, et al. Research on frost resistance of polypropylene fiber cement-based composite material[J]. Materials Reports, 2020, 34(8): 8071-8076+8082 (in Chinese). [13] LI Y G, ZHANG H M, LIU G X, et al. Multi-scale study on mechanical property and strength prediction of aeolian sand concrete[J]. Construction and Building Materials, 2020, 247: 118538. [14] 吴倩云,马芹永.冻融循环作用下BSFC的抗冻性及损伤模型[J/OL].建筑材料学报:1-14[2021-01-28].https://kns.cnki.net/kcms/detail/31.1764.TU.20200927.0931.012.html. WU Q Y,MA Q Y.Frost resistance and damage model of BSFC under freeze-thaw cycles[J/OL]. Journal of Building Materials: 1-14[2021-01-28]. https://kns.cnki.net/kcms/detail/31.1764.TU.20200927.0931.012.html (in Chinese). [15] 王伯昕,潘 晨,汪 飞,等.基于Logistic模型的混凝土冻融损伤演化规律[J].硅酸盐通报,2019,38(8):2536-2541+2548. WANG B X, PAN C, WANG F, et al. Evolution law of freeze-thaw damage of concrete based on logistic model[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(8): 2536-2541+2548 (in Chinese). [16] 武海荣,金伟良,延永东,等.混凝土冻融环境区划与抗冻性寿命预测[J].浙江大学学报(工学版),2012,46(4):650-657. WU H R, JIN W L, YAN Y D, et al. Environmental zonation and life prediction of concrete in frost environments[J]. Journal of Zhejiang University (Engineering Science), 2012, 46(4): 650-657 (in Chinese). |