[1] DE AïTCIN P C. Cements of yesterday and today: concrete of tomorrow[J]. Cement and Concrete Research, 2000, 30(9): 1349-1359. [2] LI H, XIAO H G, YUAN J, et al. Microstructure of cement mortar with nano-particles[J]. Composites Part B: Engineering, 2004, 35(2): 185-189. [3] RASHAD A M. A synopsis about the effect of nano-Al2O3, nano-Fe2O3, nano-Fe3O4 and nano-clay on some properties of cementitious materials-a short guide for civil engineer[J]. Materials & Design (1980—2015), 2013, 52: 143-157. [4] SONG S Q, JIANG L H, JIANG S B, et al. The mechanical properties and electrochemical behavior of cement paste containing nano-MgO at different curing temperature[J]. Construction and Building Materials, 2018, 164: 663-671. [5] INDUKURI C S R, NERELLA R, MADDURU S R C. Workability, microstructure, strength properties and durability properties of graphene oxide reinforced cement paste[J]. Australian Journal of Civil Engineering, 2020, 18(1): 73-81. [6] 张建武,汪 潇,杨留栓,等.氧化石墨烯改性增强水泥基材料研究进展[J].化工新型材料,2020,48(4):39-42. ZHANG J W, WANG X, YANG L S, et al. Research progress of GO in reinforced cement-based material[J]. New Chemical Materials, 2020, 48(4): 39-42 (in Chinese). [7] 罗素蓉,李 欣,林伟毅,等.氧化石墨烯分散方式对水泥基材料性能的影响[J].硅酸盐通报,2020,39(3):677-684. LUO S R, LI X, LIN W Y, et al. Effect of graphene oxide dispersion method on properties of cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(3): 677-684 (in Chinese). [8] 张则瑞,吴建东,杨敬斌,等.氧化石墨烯对水泥基自流平砂浆性能的影响[J].材料导报,2019,33(2):240-245. ZHANG Z R, WU J D, YANG J B, et al. Effect of graphene oxide on properties of cement-based self-leveling mortar[J]. Materials Reports, 2019, 33(2): 240-245 (in Chinese). [9] JIANG W G, LI X G, LV Y, et al. Cement-based materials containing graphene oxide and polyvinyl alcohol fiber: mechanical properties, durability, and microstructure[J]. Nanomaterials, 2018, 8(9): 638. [10] 马昆林,龙广成,谢友均,等.水泥-粉煤灰-石灰石粉浆体塑性黏度的影响因素[J].硅酸盐学报,2013,41(11):1481-1486. MA K L, LONG G C, XIE Y J, et al. Factors on affecting plastic viscosity of cement-fly ash-limestone compound pastes[J]. Journal of the Chinese Ceramic Society, 2013, 41(11): 1481-1486 (in Chinese). [11] 刘 宇,黎梦圆,阎培渝.矿物掺合料对胶凝材料浆体流变性能和触变性的影响[J].硅酸盐学报,2019,47(5):594-601. LIU Y, LI M Y, YAN P Y. Effect of mineral admixtures on rheological properties and thixotropy of binder paste[J]. Journal of the Chinese Ceramic Society, 2019, 47(5): 594-601 (in Chinese). [12] PARK C K, NOH M H, PARK T H. Rheological properties of cementitious materials containing mineral admixtures[J]. Cement and Concrete Research, 2005, 35(5): 842-849. [13] NEHDI M, RAHMAN M A. Estimating rheological properties of cement pastes using various rheological models for different test geometry, gap and surface friction[J]. Cement and Concrete Research, 2004, 34(11): 1993-2007. [14] MOHAMMED A, MAHMOOD W, GHAFOR K. TGA, rheological properties with maximum shear stress and compressive strength of cement-based grout modified with polycarboxylate polymers[J]. Construction and Building Materials, 2020, 235: 117534. [15] SINGH R B, SINGH B. Rheological behaviour of different grades of self-compacting concrete containing recycled aggregates[J]. Construction and Building Materials, 2018, 161: 354-364. [16] JIAO D W, SHI C J, YUAN Q. Time-dependent rheological behavior of cementitious paste under continuous shear mixing[J]. Construction and Building Materials, 2019, 226: 591-600. [17] 杨长辉,黄南菊,谢 欢,等.氧化石墨烯对碱矿渣胶结材浆体流变性能的影响[J].建筑材料学报,2018,21(6):855-863. YANG C H, HUANG N J, XIE H, et al. Effect of graphene oxide on the rheological properties of alkali-activated slag paste[J]. Journal of Building Materials, 2018, 21(6): 855-863 (in Chinese). [18] PERROT A, PIERRE A, VITALONI S, et al. Prediction of lateral form pressure exerted by concrete at low casting rates[J]. Materials and Structures, 2015, 48(7): 2315-2322. [19] JIANG S, SHAN B H, OUYANG J, et al. Rheological properties of cementitious composites with nano/fiber fillers[J]. Construction and Building Materials, 2018, 158: 786-800. |