硅酸盐通报 ›› 2021, Vol. 40 ›› Issue (6): 2011-2018.
许海铭1, 许晓明2, 牛贺洋3, 许鸽龙4, 蔡基伟4, 田青4
收稿日期:
2020-11-25
修回日期:
2021-01-21
出版日期:
2021-06-15
发布日期:
2021-07-08
通讯作者:
许鸽龙,博士。E-mail:henu2020@yeah.net
作者简介:
许海铭(1989—),男,硕士研究生。主要从事市政工程方面的研究。E-mail:xhmhenu@163.com
基金资助:
XU Haiming1, XU Xiaoming2, NIU Heyang3, XU Gelong4, CAI Jiwei4, TIAN Qing4
Received:
2020-11-25
Revised:
2021-01-21
Online:
2021-06-15
Published:
2021-07-08
摘要: 骨料间浆体层厚度或距离是混凝土性能研究和配合比设计中的重要参数,其定量方法一般包括两类浆体层厚度的计算模型、平均自由程模型以及图像分析法。本文使用以上方法计算、测量了24组混凝土试样的浆体层厚度和骨料间自由程,通过对比试样结果间的差异与关系,来说明不同方法的适用性。结果表明:不同方法所得浆体层厚度与骨料体积分数之间呈幂函数关系,且不同方法的计算值或测量值之间具有较好的线性关系,说明它们均可用于定性分析混凝土性能与细观结构之间的关系;通过对比不同浆体层厚度定量模型的推导过程,得到了修正的浆体层厚度(MAPTⅡ)模型,相比最大/平均浆体层厚度(MPT/APTⅠ)模型,其具有更好的便利性和精确程度。
中图分类号:
许海铭, 许晓明, 牛贺洋, 许鸽龙, 蔡基伟, 田青. 基于骨料-浆体两相组成的混凝土细观结构定量研究[J]. 硅酸盐通报, 2021, 40(6): 2011-2018.
XU Haiming, XU Xiaoming, NIU Heyang, XU Gelong, CAI Jiwei, TIAN Qing. Quantitative Study of Concrete Mesostructure Based on Two-Phase Composition of Aggregate and Paste[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 2011-2018.
[1] 沈卫国,崔啸宇,李家胜,等.粗集料对混凝土服役性能的影响[J].混凝土,2011(7):41-45. SHEN W G, CUI X Y, LI J S, et al. Review on the study of effect of coarse aggregate on service properties of concrete[J]. Concrete, 2011(7): 41-45 (in Chinese). [2] 沈卫国,李家胜,安 涛,等.粗集料嵌锁型高性能混凝土的研究[J].武汉理工大学学报,2011,33(12):18-21. SHEN W G, LI J S, AN T, et al. Research on the coarse aggregate interlocking high performance concrete[J]. Journal of Wuhan University of Technology, 2011, 33(12): 18-21 (in Chinese). [3] BONDAR D, NANUKUTTAN S, PROVIS J L, et al. Efficient mix design of alkali activated slag concretes based on packing fraction of ingredients and paste thickness[J]. Journal of Cleaner Production, 2019, 218: 438-449. [4] 许利惟,郑建岚.高性能混凝土早龄期自干燥收缩与浆体相对密度、骨料平均浆体厚度的关系[J].混凝土,2008(2):31-33+38. XU L W, ZHENG J L. Relationship among self-desiccation shrinkage and relative density of pastes, average paste thickness of aggregate on high performance concrete at early age[J]. Concrete, 2008(2): 31-33+38 (in Chinese). [5] 陈惠苏,孙 伟,ST ROEVEN P,等.水泥基复合材料邻近集料表面最近间距分布的解析解(英文)[J].硅酸盐学报,2005,33(7):859-863+870. CHEN H S, SUN W, STROEVEN P, et al. Analytical solution of the nearest surface spacing between neighboring aggregate grains in cementitious composites (English)[J]. Journal of the Chinese Ceramic Society, 2005, 33(7): 859-863+870. [6] 陈惠苏,孙 伟,ST ROEVEN P,等.计算混凝土中邻近集料表面间距平均值的体视学方法[J].哈尔滨工业大学学报,2005,37(11):1511-1514. CHEN H S, SUN W, ST ROEVEN P, et al. Stereological method of calculating the average value of surface spacing between the neighboring aggregate grains in concrete[J]. Journal of Harbin Institute of Technology, 2005, 37(11): 1511-1514 (in Chinese). [7] 陈惠苏,孙 伟,SLUYS L J,等.水泥基复合材料浆体厚度分布的定量表达[J].硅酸盐学报,2007,35(12):1622-1629. CHEN H S, SUN W, SLUYS L J, et al. Quantitative characterization of the distribution of cement paste thickness in cementitious composites[J]. Journal of the Chinese Ceramic Society, 2007, 35(12): 1622-1629 (in Chinese). [8] DE LARRARD F. Concrete mixture proportioning: a scientific approach[M]. London: CRC Press, 1999. [9] CHIDIAC S E, MOUTASSEM F, MAHMOODZADEH F. Compressive strength model for concrete[J]. Magazine of Concrete Research, 2013, 65(9): 557-572. [10] LI F X, WEI J X, WANG J P, et al. New method of mix design for self-compacting concrete based on material characteristics[J]. Procedia Engineering, 2012, 27: 214-222. [11] SUN K K, PENG X Q, WANG S P, et al. Design method for the mix proportion of geopolymer concrete based on the paste thickness of coated aggregate[J]. Journal of Cleaner Production, 2019, 232: 508-517. [12] SUN K K, ZHOU X M, GONG C C, et al. Influence of paste thickness on coated aggregates on properties of high-density sulphoaluminate cement concrete[J]. Construction and Building Materials, 2016, 115: 125-131. [13] HAN J G, WANG K J, WANG X H, et al. 2D image analysis method for evaluating coarse aggregate characteristic and distribution in concrete[J]. Construction and Building Materials, 2016, 127: 30-42. [14] 刘天杰,刘新飞.再生骨料比表面积和形状指数测定方法计算与分析[J].长江科学院院报,2020,37(5):170-173+179. LIU T J, LIU X F. Determining specific surface area and shape index of recycled aggregate: calculation and analysis[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(5): 170-173+179 (in Chinese). [15] 柯国军,张 琳,谢艳军.基于Image-Pro Plus软件骨料比表面积测量[J].混凝土,2017(9):157-160. KE G J, ZHANG L, XIE Y J. Measurement of specific surface area of aggregate based on Image-Pro Plus[J]. Concrete, 2017(9): 157-160 (in Chinese). |
[1] | 桂若铭, 廖宜顺, 黄浩然. 沸石粉对硫铝酸盐水泥水化行为的影响机理研究[J]. 硅酸盐通报, 2021, 40(7): 2138-2144. |
[2] | 陈梦竹, 余林文, 袁慧慧, 郑海兵, 吴芳, 蔡渝新, 李伟华. 木质素磺酸钠改性Ca-LDH对水泥基材料性能的影响[J]. 硅酸盐通报, 2021, 40(7): 2152-2158. |
[3] | 焦敏. 氧化石墨烯对新拌水泥浆体流变性的影响[J]. 硅酸盐通报, 2021, 40(7): 2159-2164. |
[4] | 赵楠, 卿龙邦, 杨卓凡, 慕儒. 不同龄期钢纤维增强水泥砂浆纤维拉拔试验与模拟研究[J]. 硅酸盐通报, 2021, 40(7): 2165-2173. |
[5] | 张成龙, 刘漪, 张明. PP/PVA纤维增强硫铝酸盐水泥基快速修补材料试验研究[J]. 硅酸盐通报, 2021, 40(7): 2174-2183. |
[6] | 刘芳, 熊锐, 钟勇强. 表面涂层对混凝土吸水性能的影响[J]. 硅酸盐通报, 2021, 40(7): 2209-2214. |
[7] | 向君正, 宋慧, 冷梦辉, 桂发亮. 透水混凝土冻融剥蚀成因分析[J]. 硅酸盐通报, 2021, 40(7): 2215-2224. |
[8] | 张广泰, 耿天娇, 鲁海波, 王明阳, 李雪藩. 冻融循环下沙漠砂纤维混凝土损伤模型研究[J]. 硅酸盐通报, 2021, 40(7): 2225-2231. |
[9] | 姚苏琴, 查文华, 刘新权, 季圣星, 何昌春, 余跃. 萍乡废弃煤矸石理化特性及热活化性能研究[J]. 硅酸盐通报, 2021, 40(7): 2280-2287. |
[10] | 段承刚, 孙永涛. 复掺高性能矿物掺合料对高强机制砂混凝土性能的影响[J]. 硅酸盐通报, 2021, 40(7): 2296-2305. |
[11] | 刘雅琦, 王淑娟, 李立新. 高炉镍铁渣和钢纤维改性混凝土的耐热性和热损伤规律[J]. 硅酸盐通报, 2021, 40(7): 2320-2330. |
[12] | 范小春, 张雯静, 梁天福, 陈凯风. 回收轮胎钢纤维再生骨料混凝土基本力学性能试验研究[J]. 硅酸盐通报, 2021, 40(7): 2331-2340. |
[13] | 黄开林, 李书进, 臧旭航. 不同类型再生细骨料对保温混凝土力学性能的影响[J]. 硅酸盐通报, 2021, 40(7): 2341-2347. |
[14] | 张超, 邓智聪, 马蕾, 刘超, 陈宇宁, 汪智斌, 贾子健, 王香港, 贾鲁涛, 陈春, 孙正明, 张亚梅. 3D打印混凝土研究进展及其应用[J]. 硅酸盐通报, 2021, 40(6): 1769-1795. |
[15] | 张翼, 朱艳梅, 任强, 蒋正武. 3D打印建筑技术及其水泥基材料研究进展评述[J]. 硅酸盐通报, 2021, 40(6): 1796-1807. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||