[1] KRESGE C T, LEONOWICZ M E, ROTH W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359(6397): 710-712. [2] 颜正朝,宋 军,林 晓,等.沸石分子筛膜的合成与应用[J].石油化工,2004,33(9):891-900. YAN Z C, SONG J, LIN X, et al. Synthesis and application of zeolite membranes[J]. Petrochemical Technology, 2004, 33(9): 891-900 (in Chinese). [3] KIM E, HONG S, JANG E, et al. An oriented, siliceous deca-dodecasil 3R (DDR) zeolite film for effective carbon capture: insight into its hydrophobic effect[J]. Journal of Materials Chemistry A, 2017, 5(22): 11246-11254. [4] SHIRAZIAN S, ASHRAFIZADEH S N. Optimum conditions for the synthesis of CHA-type zeolite membranes applicable to the purification of natural gas[J]. Industrial & Engineering Chemistry Research, 2014, 53(31): 12435-12444. [5] SAWAMURA K I, FURUHATA T, SEKINE Y, et al. Zeolite membrane for dehydration of isopropylalcohol-water mixture by vapor permeation[J]. ACS Applied Materials & Interfaces, 2015, 7(25): 13728-13730. [6] GE Q Q, WANG Z B, YAN Y S. High-performance zeolite NaA membranes on polymer-zeolite composite hollow fiber supports[J]. Journal of the American Chemical Society, 2009, 131(47): 17056-17057. [7] ZHANG F, XU L N, HU N, et al. Preparation of NaY zeolite membranes in fluoride media and their application in dehydration of bio-alcohols[J]. Separation and Purification Technology, 2014, 129: 9-17. [8] KARAKILIÇ P, WANG X R, KAPTEIJN F, et al. Defect-free high-silica CHA zeolite membranes with high selectivity for light gas separation[J]. Journal of Membrane Science, 2019, 586: 34-43. [9] ZHANG L X, JIA M D, MIN E Z. Synthesis of SAPO-34/ceramic composite membranes[J]. Studies in Surface Science and Catalysis, 1997, 105: 2211-2216. [10] KALIPCILAR H, BOWEN T C, NOBLE R D, et al. Synthesis and separation performance of SSZ-13 zeolite membranes on tubular supports[J]. Chemistry of Materials, 2002, 14(8): 3458-3464. [11] ARAKI S, ISHII H, IMASAKA S, et al. Synthesis and gas permeation properties of chabazite-type titanosilicate membranes synthesized using nano-sized seed crystals[J]. Microporous and Mesoporous Materials, 2020, 292: 109798. [12] HASEGAWA Y, HOTTA H, SATO K, et al. Preparation of novel chabazite (CHA)-type zeolite layer on porous α-Al2O3 tube using template-free solution[J]. Journal of Membrane Science, 2010, 347(1/2): 193-196. [13] KARIMI S, KORELSKIY D, YU L, et al. A simple method for blocking defects in zeolite membranes[J]. Journal of Membrane Science, 2015, 489: 270-274. [14] YANG S W, CAO Z S, ARVANITIS A, et al. DDR-type zeolite membrane synthesis, modification and gas permeation studies[J]. Journal of Membrane Science, 2016, 505: 194-204. [15] LIU B, ZHOU R F, BU N, et al. Room-temperature ionic liquids modified zeolite SSZ-13 membranes for CO2/CH4 separation[J]. Journal of Membrane Science, 2017, 524: 12-19. [16] ZHANG L, HUANG Y N. Crystallization and catalytic properties of molecular sieve SAPO-34 by a vapor-phase transport method[J]. Journal of Materials Chemistry A, 2015, 3(8): 4522-4529. [17] 李建青,陈立宇,崔 飞,等.液相晶化法合成SAPO-34分子筛[J].化学反应工程与工艺,2009,25(6):523-527+549. LI J Q, CHEN L Y, CUI F, et al. Synthesis of SAPO-34 molecular sieve by liquid-phase crystallization[J]. Chemical Reaction Engineering and Technology, 2009, 25(6): 523-527+549 (in Chinese). [18] S CUNDY C, JING P Z. Remarkable synergy between microwave heating and the addition of seed crystals in zeolite synthesis: a suggestion verified[J]. Chemical Communications, 1998(14): 1465-1466. [19] HU N, LI Y Q, ZHONG S L, et al. Microwave synthesis of zeolite CHA (chabazite) membranes with high pervaporation performance in absence of organic structure directing agents[J]. Microporous and Mesoporous Materials, 2016, 228: 22-29. [20] MA X X, LI Y H, HUANG A S. Synthesis of nano-sheets seeds for secondary growth of highly hydrogen permselective ZIF-95 membranes[J]. Journal of Membrane Science, 2020, 597: 117629. [21] WARZYWODA J, EDELMAN R D, THOMPSON R W. Crystallization of high-silica ZSM-5 in the presence of seeds[J]. Zeolites, 1991, 11(4): 318-324. [22] GORA L, THOMPSON R W. Controlled addition of aged mother liquor to zeolite NaA synthesis solutions[J]. Zeolites, 1997, 18(2/3): 132-141. [23] 孙国锋,王金渠,刘 垚.二次生长法合成沸石膜技术的研究进展[J].膜科学与技术,2008,28(2):73-78. SUN G F, WANG J Q, LIU Y. Progress of the secondary growth method for the synthesis of zeolite membrane[J]. Membrane Science and Technology, 2008, 28(2): 73-78 (in Chinese). [24] PENG C, LIU Z D, HORIMOTO A, et al. Preparation of nanosized SSZ-13 zeolite with enhanced hydrothermal stability by a two-stage synthetic method[J]. Microporous and Mesoporous Materials, 2018, 255: 192-199. [25] 吕尤佳.T型沸石分子筛膜的制备及分离性能研究[D].大连:大连理工大学,2016:27-54. LV Y J. Preparation and separation characteristics study of zeolite T membrane[D]. Dalian: Dalian University of Technology, 2016: 27-54. (in Chinese) [26] WU X W, LI Y Q, CHEN X Y, et al. Preparation of chabazite zeolite membranes by a two-stage varying-temperature hydrothermal synthesis for water-ethanol separation[J]. Separation and Purification Technology, 2020, 234: 116055. [27] HASEGAWA Y, ABE C, NISHIOKA M, et al. Influence of synthesis gel composition on morphology, composition, and dehydration performance of CHA-type zeolite membranes[J]. Journal of Membrane Science, 2010, 363(1/2): 256-264. [28] HASEGAWA Y, ABE C, NISHIOKA M, et al. Formation of high flux CHA-type zeolite membranes and their application to the dehydration of alcohol solutions[J]. Journal of Membrane Science, 2010, 364(1/2): 318-324. [29] LIU B, ZHOU R F, YOGO K, et al. Preparation of CHA zeolite (chabazite) crystals and membranes without organic structural directing agents for CO2 separation[J]. Journal of Membrane Science, 2019, 573: 333-343. [30] HU N, LI Y Q, ZHONG S L, et al. Fluoride-mediated synthesis of high-flux chabazite membranes for pervaporation of ethanol using reusable macroporous stainless steel tubes[J]. Journal of Membrane Science, 2016, 510: 91-100. [31] VILLAESCUSA L A, WHEATLEY P S, BULL I, et al. The location and ordering of fluoride ions in pure silica zeolites with framework types IFR and STF; implications for the mechanism of zeolite synthesis in fluoride media[J]. Journal of the American Chemical Society, 2001, 123(36): 8797-8805. [32] LI X S, KITA H, ZHU H, et al. Influence of the hydrothermal synthetic parameters on the pervaporative separation performances of CHA-type zeolite membranes[J]. Microporous and Mesoporous Materials, 2011, 143(2/3): 270-276. [33] JIANG J, WANG X R, ZHANG Y T, et al. Fabrication of pure-phase CHA zeolite membranes with ball-milled seeds at low K+ concentration[J]. Microporous and Mesoporous Materials, 2015, 215: 98-108. [34] CAO G, MERTENS M M, GURAM A S, et al. Synthesis of chabazite-containing molecular seves and their use in the conversion of oxygenatesto olefns: US, 7754187B2[P]. 2010-07-13. [35] REN L M, ZHU L F, YANG C G, et al. Designed copper-amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NOx by NH3[J]. Chemical Communications, 2011, 47(35): 9789. [36] ITAKURA M, INOUE T, TAKAHASHI A, et al. Synthesis of high-silica CHA zeolite from FAU zeolite in the presence of benzyltrimethylammonium hydroxide[J]. Chemistry Letters, 2008, 37(9): 908-909. [37] BHADRA B N, SEO P W, KHAN N A, et al. Conversion of Y into SSZ-13 zeolite in the presence of tetraethylammonium hydroxide and ethylene-to-propylene reactions over SSZ-13 zeolites[J]. Catalysis Today, 2017, 298: 53-60. [38] XIONG X, YUAN D Z, WU Q M, et al. Efficient and rapid transformation of high silica CHA zeolite from FAU zeolite in the absence of water[J]. Journal of Materials Chemistry A, 2017, 5(19): 9076-9080. [39] ZONES S I. Zeolite SSZ-13 and its method of preparation: US4544538[P]. 1985-10-01. [40] ZONES S I. Conversion of faujasites to high-silica chabazite SSZ-13 in the presence of N, N, N-trimethyl-1-adamantammonium iodide[J]. Journal of the Chemical Society, Faraday Transactions, 1991, 87(22): 3709. [41] NAVAJAS A, MALLADA R, TÉLLEZ C, et al. The use of post-synthetic treatments to improve the pervaporation performance of mordenite membranes[J]. Journal of Membrane Science, 2006, 270(1/2): 32-41. [42] KIYOZUMI Y, NEMOTO Y, NISHIDE T, et al. Synthesis of acid-resistant phillipsite (PHI) membrane and its pervaporation performance[J]. Microporous and Mesoporous Materials, 2008, 116(1/2/3): 485-490. [43] HASEGAWA Y, NAGASE T, KIYOZUMI Y, et al. Preparation, characterization, and dehydration performance of MER-type zeolite membranes[J]. Separation and Purification Technology, 2010, 73(1): 25-31. [44] MORIGAMI Y, KONDO M, ABE J, et al. The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane[J]. Separation and Purification Technology, 2001, 25(1/2/3): 251-260. [45] RAKOCZY R A, TRAA Y. Nanocrystalline zeolite A: synthesis, ion exchange and dealumination[J]. Microporous and Mesoporous Materials, 2003, 60(1/2/3): 69-78. [46] 陈 阳,张玉亭,张 春,等.中空纤维SAPO-34分子筛膜的制备及渗透汽化性能[J].南京工业大学学报(自然科学版),2018,40(1):46-51. CHEN Y, ZHANG Y T, ZHANG C, et al. Preparation and pervaporation performance of hollow fiber supported SAPO-34 zeolite membranes[J]. Journal of Nanjing Tech University (Natural Science Edition), 2018, 40(1): 46-51 (in Chinese). [47] JIANG J, WANG L, PENG L, et al. Preparation and characterization of high performance CHA zeolite membranes from clear solution[J]. Journal of Membrane Science, 2017, 527: 51-59. [48] CUI Y, KITA H, OKAMOTO K I. Zeolite T membrane: preparation, characterization, pervaporation of water/organic liquid mixtures and acid stability[J]. Journal of Membrane Science, 2004, 236(1/2): 17-27. [49] 季可凡,张玉亭,蒋 冀,等.CHA分子筛膜用于DMF渗透汽化脱水研究[J].南京工业大学学报(自然科学版),2018,40(3):6-11. JI K F, ZHANG Y T, JIANG J, et al. Study on pervaporation dehydration of DMF by CHA zeolite membrane[J]. Journal of Nanjing Tech University (Natural Science Edition), 2018, 40(3): 6-11 (in Chinese). [50] LI Y S, YANG W S. Microwave synthesis of zeolite membranes: a review[J]. Journal of Membrane Science, 2008, 316(1/2): 3-17. [51] HUANG A S, WANG N Y, CARO J. Synthesis of multi-layer zeolite LTA membranes with enhanced gas separation performance by using 3-aminopropyltriethoxysilane as interlayer[J]. Microporous and Mesoporous Materials, 2012, 164: 294-301. [52] LI S G, FALCONER J L, NOBLE R D. SAPO-34 membranes for CO2/CH4 separations: effect of Si/Al ratio[J]. Microporous and Mesoporous Materials, 2008, 110(2/3): 310-317. [53] WU T, DIAZ M C, ZHENG Y H, et al. Influence of propane on CO2/CH4 and N2/CH4 separations in CHA zeolite membranes[J]. Journal of Membrane Science, 2015, 473: 201-209. [54] KOSINOV N, AUFFRET C, GÜCÜYENER C, et al. High flux high-silica SSZ-13 membrane for CO2 separation[J]. J Mater Chem A, 2014, 2(32): 13083-13092. [55] XU N, LIU Z H, ZHANG Y, et al. Fast synthesis of thin all-silica DDR zeolite membranes by co-template strategy[J]. Microporous and Mesoporous Materials, 2020, 298: 110091. [56] YU L, HOLMGREN A, ZHOU M, et al. Highly permeable CHA membranes prepared by fluoride synthesis for efficient CO2/CH4 separation[J]. Journal of Materials Chemistry A, 2018, 6(16): 6847-6853. [57] JANG E, HONG S, KIM E, et al. Organic template-free synthesis of high-quality CHA type zeolite membranes for carbon dioxide separation[J]. Journal of Membrane Science, 2018, 549: 46-59. [58] QIU H E, ZHANG Y, KONG L, et al. High performance SSZ-13 membranes prepared at low temperature[J]. Journal of Membrane Science, 2020, 603: 118023. [59] SONG S C, GAO F, ZHANG Y, et al. Preparation of SSZ-13 membranes with enhanced fluxes using asymmetric alumina supports for N2/CH4 and CO2/CH4 separations[J]. Separation and Purification Technology, 2019, 209: 946-954. [60] ZHENG Y H, HU N, WANG H M, et al. Preparation of steam-stable high-silica CHA (SSZ-13) membranes for CO2/CH4 and C2H4/C2H6 separation[J]. Journal of Membrane Science, 2015, 475: 303-310. [61] LIU B, TANG C Y, LI X W, et al. High-performance SAPO-34 membranes for CO2 separations from simulated flue gas[J]. Microporous and Mesoporous Materials, 2020, 292: 109712. [62] SEN M, DANA K, DAS N. Development of LTA zeolite membrane from clay by sonication assisted method at room temperature for H2-CO2 and CO2-CH4 separation[J]. Ultrasonics Sonochemistry, 2018, 48: 299-310. [63] WANG M Q, BAI L, LI M, et al. Ultrafast synthesis of thin all-silica DDR zeolite membranes by microwave heating[J]. Journal of Membrane Science, 2019, 572: 567-579. |