[1] 广西贺州市工业和信息化委员会.贺州市石材(碳酸钙)产业发展分析及展望[J].石材,2016(4):51-54. Guangxi Hezhou Industry and Information Technology Commission. Analysis and prospect of Hezhou stone (calcium carbonate) industry development[J]. Stone, 2016(4): 51-54 (in Chinese). [2] 何凤春.试论贺州市碳酸钙产业生态发展之路[J].广西节能,2015(4):19-21. HE F C. On the ecological development of calcium carbonate industry in Hezhou city[J]. Guangxi Jieneng, 2015(4): 19-21 (in Chinese). [3] 李 媛.2019第三届中国(贺州)石材·碳酸钙展览会在桂召开 2019中国(贺州)碳酸钙产业发展论坛同日举行[J].中国建材,2019,68(10):78. LI Y. The 3rd China (Hezhou) stone & calcium carbonate exhibition will be held in Guangxi[J]. China Building Materials, 2019, 68(10): 78 (in Chinese). [4] 冯立平,俞 锋.纤维水泥板与硅酸钙板的性能比较及标准解析[J].混凝土与水泥制品,2017(8):46-51. FENG L P, YU F. Performance comparison and standard analysis on fiber cement board and silicate calcium board[J]. China Concrete and Cement Products, 2017(8): 46-51 (in Chinese). [5] 沈荣熹.我国硅钙板/纤维水泥板行业可持续发展的探讨[J].混凝土世界,2010(2):52-58. SHEN R X. Discussions on the sustainable development of China calcium silicate board/fiber cement board industry[J]. China Concrete, 2010(2): 52-58 (in Chinese). [6] PIZZOL V D, MENDES L M, FREZZATTI L, et al. Effect of accelerated carbonation on the microstructure and physical properties of hybrid fiber-cement composites[J]. Minerals Engineering, 2014, 59: 101-106. [7] SOROUSHIAN P, SHAH Z, WON J P. Optimization of wastepaper fiber-cement composites[J]. ACI Materials Journal, 1995, 92(1): 82-92. [8] KUDER K G, SHAH S P. Processing of high-performance fiber-reinforced cement-based composites[J]. Construction and Building Materials, 2010, 24(2): 181-186. [9] 郭秋生.纤维水泥板研究进展[J].材料导报,2018,32(s1):478-483+489. GUO Q S. Development of fiber cement board[J]. Materials Review, 2018, 32(s1): 478-483+489 (in Chinese). [10] 冯 铭,杨聪武.浅谈硅酸钙板的生产与应用[J].新型建筑材料,2012,39(11):82-84. FENG M, YANG C W. Discussion on production and application of calcium silicate board[J]. New Building Materials, 2012, 39(11): 82-84 (in Chinese). [11] 田 键,申盛伟,叶 斌,等.有色金属尾矿在加气混凝土中的应用研究[J].新型建筑材料,2016,43(12):10-13+75. TIAN J, SHEN S W, YE B, et al. Research on the application of non-ferrous tailings in aerated concrete[J]. New Building Materials, 2016, 43(12): 10-13+75 (in Chinese). [12] 郭秋生,耿春雷.钼尾矿对纤维水泥板抗折强度的影响研究[J].混凝土与水泥制品,2019(8):41-44. GUO Q S, GENG C L. The effect study of molybdenum tailings on compressive strength of fiber cement board[J]. China Concrete and Cement Products, 2019(8): 41-44 (in Chinese). [13] 曹永丹,李彦鑫,张金山,等.硅钙基固废原料配比及蒸养条件对硅酸钙板力学性能的影响[J].硅酸盐通报,2018,37(1):122-128. CAO Y D, LI Y X, ZHANG J S, et al. Effect of raw material ratio of silicon-calcium based solid wastes and autoclaved curing conditions on mechanical property of calcium silicate board[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(1): 122-128 (in Chinese). [14] 夏惠凤.硅藻土用于纤维增强硅酸钙板生产的试验研究[J].混凝土与水泥制品,2014(2):87-89. XIA H F. Experimental study on diatomite for producting fiber reinforced calcium silicate boards[J]. China Concrete and Cement Products, 2014(2): 87-89 (in Chinese). [15] WANG Z H, MA S H, ZHENG S L, et al. Flexural strength and thermal conductivity of fiber-reinforced calcium silicate boards prepared from fly ash[J]. Journal of Materials in Civil Engineering, 2019, 31(8): 04019140. [16] HINCAPIÉ ROJAS D F, PINEDA-GÓMEZ P, GUAPACHA-FLORES J F. Effect of silica nanoparticles on the mechanical and physical properties of fibercement boards[J]. Journal of Building Engineering, 2020, 31: 101332. [17] FELIPE-SESÉ M A, PÉREZ-VILLAREJO L, CASTRO E, et al. Wood bottom ash and GeoSilex: a by-product of the acetylene industry as alternative raw materials in calcium silicate units[J]. Materials, 2020, 13(2): 489. [18] 雒 锋,金玉杰.秸秆灰制备硅酸钙板的研究[J].新型建筑材料,2020,47(9):35-39. LUO F, JIN Y J. Preparation of calcium silicate board from biomass straw ash[J]. New Building Materials, 2020, 47(9): 35-39 (in Chinese). [19] CHEN M X, ZHENG Y, ZHOU X M, et al. Recycling of paper sludge powder for achieving sustainable and energy-saving building materials[J]. Construction and Building Materials, 2019, 229: 116874. [20] WANG Y, FANG K T. Uniform design of experiments with mixtures[J]. Science in China Series A, 1996, 44(3): 468-479. [21] MA B G, CAI L X, LI X G, et al. Utilization of iron tailings as substitute in autoclaved aerated concrete: physico-mechanical and microstructure of hydration products[J]. Journal of Cleaner Production, 2016, 127: 162-171. [22] 宋少民,陈泓燕.铁尾矿微粉对低熟料胶凝材料混凝土性能的影响研究[J].硅酸盐通报,2020,39(8):2557-2566. SONG S M, CHEN H Y. Influence of iron tailings powder on performance of low clinker cementitious material concrete[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(8): 2557-2566 (in Chinese). [23] 詹国良,林 东,沈云泽,等.养护制度对活性粉末混凝土强度影响机理研究[J].建筑科学,2016,32(5):96-100+112. ZHAN G L, LIN D, SHEN Y Z, et al. Study on the influence of curing regime on strength of reactive powder concrete and its mechanism[J]. Building Science, 2016, 32(5): 96-100+112 (in Chinese). [24] TARN C M, TAM V W Y, NG K M. Optimal conditions for producing reactive powder concrete[J]. Magazine of Concrete Research, 2010, 62(10): 701-716. [25] PORTENEUVE C, ZANNI H, VERNET C, et al. Nuclear magnetic resonance characterization of high- and ultrahigh-performance concrete: application to the study of water leaching[J]. Cement and Concrete Research, 2001, 31(12): 1887-1893. [26] BACARJI E, TOLEDO FILHO R D, KOENDERS E A B, et al. Sustainability perspective of marble and granite residues as concrete fillers[J]. Construction and Building Materials, 2013, 45: 1-10. |