[1] MANTHIRAM A, FU Y, SU Y S. Challenges and prospects of lithium-sulfur batteries[J]. Accounts of Chemical Research, 2013, 46(5): 1125-1134. [2] 谷 穗,靳 俊,卢 洋,等.锂硫电池的穿梭效应与抑制[J].储能科学与技术,2017,6(5):1026-1040. GU S, JIN J, LU Y, et al. Recent progress in research on the shuttle effect and its suppression for lithium sulfur batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 1026-1040 (in Chinese). [3] 张文蓝,张 静,李合琴.锂硫电池的穿梭效应及解决策略[J].新材料产业,2018(9):17-22. ZHANG W L, ZHANG J, LI H Q. Shuttle effect and solution strategy of lithium sulfur battery[J]. Advanced Materials Industry, 2018(9): 17-22 (in Chinese). [4] 高天骥,许德平,黄正宏,等.锂硫电池中抑制穿梭效应和锂枝晶的近期进展[J].化学工业与工程,2018,35(4):66-74. GAO T J, XU D P, HUANG Z H, et al. Progress on inhibiting the shuttle effect and lithium dendrite of lithium sulfur batteries[J]. Chemical Industry and Engineering, 2018, 35(4): 66-74 (in Chinese). [5] HAN S C, PU X, LI X L, et al. High areal capacity of Li-S batteries enabled by freestanding CNF/rGO electrode with high loading of lithium polysulfide[J]. Electrochimica Acta, 2017, 241: 406-413. [6] SUN K, CAMA C A, HUANG J, et al. Effect of carbon and binder on high sulfur loading electrode for Li-S battery technology[J]. Electrochimica Acta, 2017, 235: 399-408. [7] MA G Q, WEN Z Y, JIN J, et al. Enhanced cycle performance of Li-S battery with a polypyrrole functional interlayer[J]. Journal of Power Sources, 2014, 267: 542-546. [8] SUN W, OU X G, YUE X Y, et al. A simply effective double-coating cathode with MnO2 nanosheets/graphene as functionalized interlayer for high performance lithium-sulfur batteries[J]. Electrochimica Acta, 2016, 207: 198-206. [9] ZENG F L, LI N, SHEN Y Q, et al. Improve the electrodeposition of sulfur and lithium sulfide in lithium-sulfur batteries with a comb-like ion-conductive organo-polysulfide polymer binder[J]. Energy Storage Materials, 2019, 18: 190-198. [10] WANG S P, YANG Z G, ZHANG H Y, et al. Mesoporous β-MnO2/sulfur composite as cathode material for Li-S batteries[J]. Electrochimica Acta, 2013, 106: 307-311. [11] DENG H H, YAO L B, HUANG Q A, et al. Highly improved electrochemical performance of Li-S batteries with heavily nitrogen-doped three-dimensional porous graphene interlayers[J]. Materials Research Bulletin, 2016, 84: 218-224. [12] HUANG H, LIU J J, XIA Y, et al. Supercritical fluid assisted synthesis of titanium carbide particles embedded in mesoporous carbon for advanced Li-S batteries[J]. Journal of Alloys and Compounds, 2017, 706: 227-233. [13] CHENG Y M, JI S M, LIU Y H, et al. High sulfur loading in activated bamboo-derived porous carbon as a superior cathode for rechargeable Li-S batteries[J]. Arabian Journal of Chemistry, 2019, 12(8): 3517-3525. [14] KOH J Y, KIM S, PARK M S, et al. The role of the carbon framework in sulfur-carbon composite cathodes in Li-S batteries[J]. Electrochimica Acta, 2016, 212: 212-216. [15] 陈飞彪.锂硫电池正极材料的制备及其电化学性能研究[D].北京:北京理工大学,2015:13-15. CHEN F B. Synthesis and electrochemical performance of cathode material for lithium-sulfur batteries[D]. Beijing: Beijing Institute of Technology, 2015: 13-15 (in Chinese). [16] ZHOU G M, WANG D W, LI F, et al. A flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li-S batteries[J]. Energy & Environmental Science, 2012, 5(10): 8901. [17] ZHANG X L, ZHANG P, ZHANG S J, et al. Confining sulfur in intact freestanding scaffold of yolk-shell nanofibers with high sulfur content for lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2020, 51: 378-387. [18] ZENG L C, PAN F S, LI W H, et al. Free-standing porous carbon nanofibers-sulfur composite for flexible Li-S battery cathode[J]. Nanoscale, 2014, 6(16): 9579-9587. [19] ELAZARI R, SALITRA G, GARSUCH A, et al. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2011, 23(47): 5641-5644. [20] WANG Y T, LIU B, ZHANG W, et al. Three-dimensional graphene-wrapped porous carbon/sulfur composite for cathode of lithium-sulfur battery[J]. SN Applied Sciences, 2020, 2(7): 1-10. [21] YUAN Z, PENG H J, HUANG J Q, et al. Electrodes: hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries[J]. Advanced Functional Materials, 2014, 24(39): 6244. [22] LI Z, ZHANG J T, CHEN Y M, et al. Pie-like electrode design for high-energy density lithium-sulfur batteries[J]. Nature Communications, 2015, 6: 8850. [23] MIAO L, WANG W, YUAN K, et al. A lithium-sulfur cathode with high sulfur loading and high capacity per area: a binder-free carbon fiber cloth-sulfur material[J]. Chemical Communications (Cambridge, England), 2014, 50(87): 13231-13234. [24] ZHANG J, LI J Y, WANG W P, et al. Microemulsion assisted assembly of 3D porous S/graphene@g-C3N4 hybrid sponge as free-standing cathodes for high energy density Li-S batteries[J]. Advanced Energy Materials, 2018, 8(14): 1702839. [25] ZHONG Y, XIA X H, DENG S J, et al. Popcorn inspired porous macrocellular carbon: rapid puffing fabrication from rice and its applications in lithium-sulfur batteries[J]. Advanced Energy Materials, 2018, 8(1): 1701110. [26] LI Z, JIANG Y, YUAN L, et al. A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core-shell structured cathode for Li-S batteries[J]. ACS Nano, 2014, 8(9): 9295-9303. [27] SCHUSTER J, HE G, MANDLMEIER B, et al. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries[J]. Angewandte Chemie, 2012, 124(15): 3651-3655. [28] XIA P T, CHEN F P, LEI W X, et al. Long cycle performance folium cycas biochar/S composite material for lithium-sulfur batteries[J]. Ionics, 2020, 26(1): 183-189. [29] 王春丽,孙连山,钟 鸣,等.过渡金属及其化合物应用于锂硫电池的研究进展[J].应用化学,2020,37(4):387-404. WANG C L, SUN L S, ZHONG M, et al. Research progress of transition metal and compounds for lithium-sulfur batteries[J]. Chinese Journal of Applied Chemistry, 2020, 37(4): 387-404 (in Chinese). [30] LIANG X, HART C, PANG Q, et al. A highly efficient polysulfide mediator for lithium-sulfur batteries[J]. Nature Communications, 2015, 6: 5682. [31] WEI H, RODRIGUEZ E F, BEST A S, et al. Chemical bonding and physical trapping of sulfur in mesoporous magnéli Ti4O7 microspheres for high-performance Li-S battery[J]. Advanced Energy Materials, 2017, 7(4): 1601616. [32] YANG R L, DU H W, LIN Z Q, et al. ZnO nanoparticles filled tetrapod-shaped carbon shell for lithium-sulfur batteries[J]. Carbon, 2019, 141: 258-265. [33] ZHANG S S, TRAN D T. Pyrite FeS2 as an efficient adsorbent of lithium polysulphide for improved lithium-sulphur batteries[J]. Journal of Materials Chemistry A, 2016, 4(12): 4371-4374. [34] LI Y, CHEN J, ZHANG Y F, et al. NiS2/rGO/S capable of lithium polysulfide trapping as an enhanced cathode material for lithium sulfur batteries[J]. Journal of Alloys and Compounds, 2018, 766: 804-812. [35] LEI T, CHEN W, HUANG J W, et al. Multi-functional layered WS2 nanosheets for enhancing the performance of lithium-sulfur batteries[J]. Advanced Energy Materials, 2017, 7(4): 1601843. [36] HAO Z X, YUAN L X, CHEN C J, et al. TiN as a simple and efficient polysulfide immobilizer for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2016, 4(45): 17711-17717. [37] SUN Z, ZHANG J, YIN L, et al. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries[J]. Nature Communications, 2017, 8: 14627. [38] ZHANG X, YAO L, LIU S, et al. High-performance lithium sulfur batteries based on nitrogen-doped graphitic carbon derived from covalent organic frameworks[J]. Materials Today Energy, 2018, 7: 141-148. [39] ZHANG X, WANG Z, YAO L, et al. Synthesis of core-shell covalent organic frameworks/multi-walled carbon nanotubes nanocomposite and application in lithium-sulfur batteries[J]. Materials Letters, 2018, 213: 143-147. [40] HUANG Y B, PACHFULE P, SUN J K, et al. From covalent-organic frameworks to hierarchically porous B-doped carbons: a molten-salt approach[J]. Journal of Materials Chemistry A, 2016, 4(11): 4273-4279. [41] ZHANG Y Q, TANG W W, ZHAN R M, et al. An N-doped porous carbon/MXene composite as a sulfur host for lithium-sulfur batteries[J]. Inorganic Chemistry Frontiers, 2019, 6(10): 2894-2899. [42] CHEN X D, XU Y J, DU F H, et al. Covalent organic framework derived boron/oxygen codoped porous carbon on CNTs as an efficient sulfur host for lithium-sulfur batteries[J]. Small Methods, 2019, 3(11): 1900338. [43] KIM M, LEE J, JEON Y, et al. Phosphorus-doped graphene nanosheets anchored with cerium oxide nanocrystals as effective sulfur hosts for high performance lithium-sulfur batteries[J]. Nanoscale, 2019, 11(29): 13758-13766. [44] ZHOU F, QIAO Z S, ZHANG Y G, et al. Bimetallic MOF-derived CNTs-grafted carbon nanocages as sulfur host for high-performance lithium-sulfur batteries[J]. Electrochimica Acta, 2020, 349: 136378. [45] ZHOU G, PAEK E, HWANG G S, et al. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge[J]. Nature Communications, 2015, 6: 7760. [46] FAN X J, TAN F R, MENG F C, et al. Hierarchical porous N-doped carbon nanosheets obtained by organic-inorganic bipolymeric engineering for improved lithium-sulfur batteries[J]. Chemistry-A European Journal, 2019, 25(16): 4040-4046. [47] YANG G C, SHI S Q, YANG J H, et al. Insight into the role of Li2S2 in Li-S batteries: a first-principles study[J]. Journal of Materials Chemistry A, 2015, 3(16): 8865-8869. [48] YUAN Z, PENG H J, HOU T Z, et al. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts[J]. Nano Letters, 2016, 16(1): 519-527. [49] LI Y J, WU J B, ZHANG B, et al. Fast conversion and controlled deposition of lithium (poly) sulfides in lithium-sulfur batteries using high-loading cobalt single atoms[J]. Energy Storage Materials, 2020, 30: 250-259. [50] DU Z, CHEN X, HU W, et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2019, 141(9): 3977-3985. |