硅酸盐通报 ›› 2021, Vol. 40 ›› Issue (2): 664-675.
所属专题: 耐火材料
许志强, 左海滨, 刘林程
收稿日期:
2020-09-06
修回日期:
2020-11-05
出版日期:
2021-02-15
发布日期:
2021-03-10
通讯作者:
左海滨,博士,教授。E-mail:zuohaibin@ustb.edu.cn
作者简介:
许志强(1994—),男,硕士研究生。主要从事高炉耐火材料方面的研究。E-mail:g20189226@xs.ustb.edu.cn
基金资助:
XU Zhiqiang, ZUO Haibin, LIU Lincheng
Received:
2020-09-06
Revised:
2020-11-05
Online:
2021-02-15
Published:
2021-03-10
摘要: 高温烧成铝碳质耐火材料是一种由氧化铝和炭素为基体原料,加入Al、Si、SiC等添加剂,用沥青或树脂等结合剂黏结烧成的耐火材料,被广泛应用于高炉炼铁、铁水预处理、炼钢、连铸等冶金工序中。耐火材料组成是其获得优质性能的基础,整理分析耐火材料中各组分对性能的影响,可以为开发低成本优质耐火材料提供理论支持和研究导向。本文总结了高温烧成铝碳质耐火材料中碳源、结合剂、添加剂的作用及其对材料性能的影响,并对潜在研究方向进行了展望。
中图分类号:
许志强, 左海滨, 刘林程. 铝碳质耐火材料研究进展及展望[J]. 硅酸盐通报, 2021, 40(2): 664-675.
XU Zhiqiang, ZUO Haibin, LIU Lincheng. Research and Prospect of Alumina-Carbon Refractories[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(2): 664-675.
[1] 程坤明,Jorg Mittag.影响高炉炉底炉缸炭砖使用寿命的因素[J].炼铁,2006,25(1):11-15. CHENG K M, MITTAG J. Factors influencing service life of carbon bricks lined on furnace bottom and hearth[J]. Ironmaking, 2006, 25(1): 11-15 (in Chinese). [2] 左海滨,王 聪,张建良,等.高炉炉缸耐火材料应用现状及重要技术指标[J].钢铁,2015,50(2):1-6. ZUO H B, WANG C, ZHANG J L, et al. Application status and important technical indexes of BF hearth refractory[J]. Iron & Steel, 2015, 50(2): 1-6 (in Chinese). [3] ZUO H B, WANG C, ZHANG J L, et al. Comparison of oxidation behaviors of novel carbon composite brick with traditional carbon brick[J]. Ceramics International, 2015, 41(6): 7929-7936. [4] 孙旭东.连铸用含纳米碳源低碳铝碳耐火材料的研究[J].耐火与石灰,2019,44(5):49-55. SUN X D. Study on the nanocarbon containing Al2O3-C continuous casting refractories with reduced fixed carbon content[J]. Refractories & Lime, 2019, 44(5): 49-55 (in Chinese). [5] PILLI V, SARKAR R. Nanocarbon containing Al2O3-C continuous casting refractories: effect of graphite content[J]. Journal of Alloys and Compounds, 2018, 735: 1730-1736. [6] 廖 宁,李亚伟,桑绍柏,等.纳米炭黑和鳞片石墨对低碳铝碳材料性能的影响[J].耐火材料,2015,49(1):6-12. LIAO N, LI Y W, SANG S B, et al. Effects of nano carbon black and graphite flake on properties of low carbon Al2O3-C refractories[J]. Refractories, 2015, 49(1): 6-12 (in Chinese). [7] ZHU T B, LI Y W, SANG S B, et al. Effect of nanocarbon sources on microstructure and mechanical properties of MgO-C refractories[J]. Ceramics International, 2014, 40(3): 4333-4340. [8] FAN H B, LI Y W, SANG S B. Microstructures and mechanical properties of Al2O3-C refractories with silicon additive using different carbon sources[J]. Materials Science and Engineering: A, 2011, 528(7/8): 3177-3185. [9] 伍积明,赵永安,李明欢.一种满足炉缸炉底安全的碳复合砖[C]//2017第二十届耐火材料应用与发展技术研讨会.黄山,2017. WU J M, ZHAO Y A, LI M H. A kind of carbon composite brick for the safety of hearth and bottom[C]//The 20th symposium on refractory application and development technology in 2017. Huangshan, 2017 (in Chinese). [10] Tritt T M. Thermal conductivity[M]. Boston: Springer, 2004. [11] ZHU T B, LI Y W, SANG S B, et al. Mechanical behavior and thermal shock resistance of MgO-C refractories: influence of graphite content[J]. Ceramics International, 2017, 43(9): 7177-7183. [12] LIAO N, LI Y W, WANG Q H, et al. Synergic effects of nano carbon sources on thermal shock resistance of Al2O3-C refractories[J]. Ceramics International, 2017, 43(16): 14380-14388. [13] BEHERA S, SARKAR R. Effect of different metal powder anti-oxidants on N220 nano carbon containing low carbon MgO-C refractory: an in-depth investigation[J]. Ceramics International, 2016, 42(16): 18484-18494. [14] 郭敬娜,田先明,洪学勤.低碳镁碳砖抗热震性能的改进[J].武汉科技大学学报,2008,31(s2):212-213. GUO J N, TIAN X M, HONG X Q. Improvement of thermal shock resistance of low carbon magnesia carbon brick[J]. Journal of Wuhan University of Science and Technology, 2008, 31(s2): 212-213 (in Chinese). [15] BAG M, ADAK S, SARKAR R. Study on low carbon containing MgO-C refractory: use of nano carbon[J]. Ceramics International, 2012, 38(3): 2339-2346. [16] 邵荣丹,张文杰,顾华志,等.超细炭素原料对Al2O3-ZrO2-C材料性能及微孔结构的影响[J].耐火材料,2005,39(5):330-332. SHAO R D, ZHANG W J, GU H Z, et al. Influence of ultra fine carbon powder on properties and millipore structure of Al2O3-ZrO2-C materials[J]. Refractories, 2005, 39(5): 330-332 (in Chinese). [17] WANG H, LI Y W, ZHU T B, et al. Strengthening of Al2O3-C slide gate plate refractories with microcrystalline graphite[J]. Ceramics International, 2017, 43(13): 9912-9918. [18] LUO M, LI Y W, JIN S L, et al. Microstructures and mechanical properties of Al2O3-C refractories with addition of multi-walled carbon nanotubes[J]. Materials Science and Engineering: A, 2012, 548: 134-141. [19] LIAO N, LI Y W, JIN S L, et al. Enhanced mechanical performance of Al2O3-C refractories with nano carbon black and in situ formed multi-walled carbon nanotubes (MWCNTs)[J]. Journal of the European Ceramic Society, 2016, 36(3): 867-874. [20] 廖 宁,李亚伟,桑绍柏.添加硅和硅微粉氧化铝-碳纳米管耐火材料的制备与性能[J].硅酸盐学报,2017,45(3):433-440. LIAO N, LI Y W, SANG S B. Effects of silicon and microsilica additive on microstructure and mechanical properties of Al2O3-C multi-walled carbon nanotubes refractories[J]. Journal of the Chinese Ceramic Society, 2017, 45(3): 433-440 (in Chinese). [21] 杨立强,闫广周,黄 辉,等.酚醛树脂黏度对铝碳材料显微结构和力学性能的影响[J].耐火材料,2010,44:186-188. YANG L Q, YAN G Z, HUANG H, et al. Effect of phenolic resin viscosity on microstructure and mechanical properties of alumina-carbon materials[J]. Refractories(in Chinese), 2010, 44: 186-188 (in Chinese). [22] GARDZIELLA A, PILATO L A, KNOP A. Phenolic resins: chemistry, reactions, mechanism[M]//Phenolic Resins. Berlin: Springer, 2000: 24-82. [23] DEEMER E M, CHIANELLI R R. Modified asphalt[M]. IntechOpen, 2018. [24] DARBAN S, KAKROUDI M G, VANDCHALI M B, et al. Characterization of Ni-doped pyrolyzed phenolic resin and its addition to the Al2O3-C refractories[J]. Ceramics International, 2020, 46(13): 20954-20962. [25] RASTEGAR H, BAVAND-VANDCHALI M, NEMATI A, et al. Phase and microstructural evolution of low carbon MgO-C refractories with addition of Fe-catalyzed phenolic resin[J]. Ceramics International, 2019, 45(3): 3390-3406. [26] 贺淼琳.酚醛树脂基耐火材料的石墨化研究[J].耐火与石灰,2018,43(4):38-48. HE M L. Graphitization of phenolic resins for carbon-based refractories[J]. Refractories & Lime, 2018, 43(4): 38-48 (in Chinese). [27] TALABI S I, LUZ A P, LUCAS A A, et al. Catalytic graphitization of novolac resin for refractory applications[J]. Ceramics International, 2018, 44(4): 3816-3824. [28] CHEN Y Q, LIU G Q, HOU X J, et al. Influence of bonding carbon on low carbon Al2O3-C refractory composites[J]. Ceramics International, 2017, 43(17): 14599-14607. [29] 丁冬海,杨少雨,肖国庆.含碳耐火材料酚醛树脂结合剂的研究现状与展望[J].材料导报,2017,31(11):95-100. DING D H, YANG S Y, XIAO G Q. Progress in phenolic resin binder for carbon containing refractories[J]. Materials Review, 2017, 31(11): 95-100 (in Chinese). [30] 杨文刚,杨凤玲,李红霞,等.沥青种类和硝酸镍对铝碳材料性能与结构的影响[J].耐火材料,2016,50(5):325-328. YANG W G, YANG F L, LI H X, et al. Effects of pitch variety and nickel nitrate on performance and structure of Al2O3-C refractories[J]. Refractories, 2016, 50(5): 325-328 (in Chinese). [31] 方 伟,赵 雷,于晓燕,等.酚醛树脂在耐火材料中的应用及其研究现状[J].耐火材料,2013,47(4):303-306. FANG W, ZHAO L, YU X Y, et al. Applications and research status of phenolic resin in refractories[J]. Refractories, 2013, 47(4): 303-306 (in Chinese). [32] LUO M, LI Y W, SANG S B, et al. In situ formation of carbon nanotubes and ceramic whiskers in Al2O3-C refractories with addition of Ni-catalyzed phenolic resin[J]. Materials Science and Engineering: A, 2012, 558: 533-542. [33] 左小华,屈 媛,谭清平,等.用作耐火材料结合剂改性酚醛树脂的研究[J].化学工程与装备,2010(4):40-42+16. ZUO X H, QU Y, TAN Q P, et al. Study on modified phenolic resin as refractory binder[J]. Chemical Engineering & Equipment, 2010(4): 40-42+16 (in Chinese). [34] LIAO N, LI Y W, JIN S L, et al. Combined effects of boron carbide, silicon, and MWCNTs in alumina-carbon refractories on their microstructural evolution[J]. Journal of the American Ceramic Society, 2017, 100(1): 443-450. [35] LIAO N, LI Y W, JIN S L, et al. Reduced brittleness of multi-walled carbon nanotubes (MWCNTs) containing Al2O3-C refractories with boron carbide[J]. Materials Science and Engineering: A, 2017, 698: 80-87. [36] YAMAGUCHI A. Self-repairing function in the carbon-containing refractory[J]. International Journal of Applied Ceramic Technology, 2007, 4(6): 490-495. [37] ATZENHOFER C, GSCHIEL S, HARMUTH H. Phase formation in Al2O3-C refractories with Al addition[J]. Journal of the European Ceramic Society, 2017, 37(4): 1805-1810. [38] 石 凯,罗 焰,钟香崇.Al和Al-Si加入量对Al2O3-C材料高温性能的影响[J].耐火材料,2007,41(2):97-100+107. SHI K, LUO Y, ZHONG X C. Effects of Al and Al-Si contents on high-temperature properties of Al2O3-C material[J]. Refractories, 2007, 41(2): 97-100+107 (in Chinese). [39] 赵 飞,朱伯铨,李享成,等.Al粉、Si粉对低碳Al2O3-C滑板显微结构和高温力学性能的影响[J].耐火材料,2013,47(2):115-117. ZHAO F, ZHU B Q, LI X C, et al. Influences of Al and Si powders on microstructure and hot mechanical properties of Al2O3-C slide plates[J]. Refractories, 2013, 47(2): 115-117 (in Chinese). [40] DING J, YU C, LIU J P, et al. Effects of silicon powder content on the properties and interface bonding of nitrided Al2O3-C refractories[J]. Materials Chemistry and Physics, 2018, 206: 193-203. [41] 刘新红,钟香崇.加入不同量Al粉和Si粉的低碳Al2O3-C滑板的高温力学性能[J].耐火材料,2013,47(1):6-9. LIU X H, ZHONG X C. High temperature mechanical properties of Al and Si incorporated low carbon Al2O3-C slide plate materials[J]. Refractories, 2013, 47(1): 6-9 (in Chinese). [42] GHASEMI-KAHRIZSANGI S, DEHSHEIKH H G, KARAMIAN E. Impact of Titania nanoparticles addition on the microstructure and properties of MgO-C refractories[J]. Ceramics International, 2017, 43(17): 15472-15477. [43] WANG Q H, LI Y W, LIAO N, et al. Synthesis of boron and nitrogen-doped expanded graphite as efficient reinforcement for Al2O3-C refractories[J]. Ceramics International, 2017, 43(18): 16710-16721. [44] WATANABE A, TAKAHASHI H. Behavior of different metals added to MgO-C brick[J]. Taikabutsu (Japanese), 1986, 11(38): 740-746. [45] 刘耕夫,李亚伟,廖 宁,等.添加碳化硼对低碳铝碳耐火材料显微结构和性能的影响[J].硅酸盐学报,2017,45(9):1340-1346. LIU G F, LI Y W, LIAO N, et al. Effect of B4C additive on microstructure and mechanical properties of low carbon Al2O3-C refractories[J]. Journal of the Chinese Ceramic Society, 2017, 45(9): 1340-1346 (in Chinese). [46] ZHU T B, LI Y W, SANG S B, et al. Formation of nanocarbon structures in MgO-C refractories matrix: influence of Al and Si additives[J]. Ceramics International, 2016, 42(16): 18833-18843. [47] MERTKE A, ANEZIRIS C G. The influence of nanoparticles and functional metallic additions on the thermal shock resistance of carbon bonded alumina refractories[J]. Ceramics International, 2015, 41(1): 1541-1552. [48] ZHANG S, LEE W E. Influence of additives on corrosion resistance and corroded microstructures of MgO-C refractories[J]. Journal of the European Ceramic Society, 2001, 21(13): 2393-2405. [49] RYMON-LIPINSKI T, FICHTNER R, BENECKE T. Study of the oxidation protection of MgO-C refractories by means of boron carbide[J]. Steel Research, 1992, 63(11): 493-495. [50] WANG T M, YAMAGUCHI A. Oxidation protection of MgO-C refractories by means of Al8B4C7[J]. Journal of the American Ceramic Society, 2001, 84(3): 577-582. [51] DEHSHEIKH H G, GHASEMI-KAHRIZSANGI S. Performance improvement of MgO-C refractory bricks by the addition of nano-ZrSiO4[J]. Materials Chemistry and Physics, 2017, 202: 369-376. [52] 郭汉杰.冶金物理化学教程[M].北京:冶金工业出版社,2006. GUO H J. A course in physical chemistry of metallurgy[M]. Beijing: Metallurgical Industry Press, 2006. [53] YAMAGUCHI A, YU J K. Behavior of carbon obtained from pitch and resin added to carbon-containing refractories[J]. Journal of the Ceramic Society of Japan, 1994, 102(1181): 73-77. [54] KHEZRABADI M N, JAVADPOUR J, REZAIE H R, et al. The effect of additives on the properties and microstructures of Al2O3-C refractories[J]. Journal of Materials Science, 2006, 41(10): 3027-3032. [55] BRACHHOLD N, FRUHSTORFER J, MERTKE A, et al. Carbon-bonded alumina refractories with reduced carbon content due to the addition of semi-conductive silicon and/or nanoparticles[J]. Journal of Ceramic Science and Technology, 2016, 7(2): 209-222. [56] YIN C F, ZHANG J, LI X C, et al. Simulation and experimental investigation of preferred β-sialon growth and its effects on thermo-mechanical properties of Al2O3-C refractories[J]. Ceramics International, 2019, 45(14): 17298-17304. [57] 吕李华,肖国庆,刘 洋,等.添加MgB2对铝碳耐火材料抗氧化性能的影响[J].兵器材料科学与工程,2012,35(2):64-66. LV L H, XIAO G Q, LIU Y, et al. Effect of adding MgB2 on the oxidation resistance of Al2O3-C refractories[J]. Ordnance Material Science and Engineering, 2012, 35(2): 64-66 (in Chinese). [58] 刘新红,朱晓燕,马 腾,等.纳米技术在耐火材料中应用的研究进展[J].硅酸盐通报,2014,33(10):2514-2519+2526. LIU X H, ZHU X Y, MA T, et al. Study progress of applications of nano-technology in refractories[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(10): 2514-2519+2526 (in Chinese). [59] ROUNGOS V, ANEZIRIS C G. Improved thermal shock performance of Al2O3-C refractories due to nanoscaled additives[J]. Ceramics International, 2012, 38(2): 919-927. [60] GHASEMI-KAHRIZSANGI S, DEHSHEIKH H G, BOROUJERDNIA M. Effect of micro and nano-Al2O3 addition on the microstructure and properties of MgO-C refractory ceramic composite[J]. Materials Chemistry and Physics, 2017, 189: 230-236. [61] LAO X B, XU X Y, JIANG W H, et al. Effect of SiC nanoparticles on in situ synthesis of SiC whiskers in corundum-mullite-SiC composites obtained by carbothermal reduction[J]. Ceramics International, 2020, 46(7): 9225-9232. [62] MA B Y, YU J K. Synthesis of ZrO2-SiC composite powder and effect of its addition on properties of Al2O3-C refractories[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(5): 996-1000. [63] 王少华,彭 耐,邓承继,等.原位反应生成Sialon结合Al2O3-C材料的抗渣侵蚀机理[J].硅酸盐通报,2015,34(9):2501-2505. WANG S H, PENG N, DENG C J, et al. Mechanism of slag corrosion of in situ synthesis β-Sialon bonded Al2O3-C refractory[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(9): 2501-2505 (in Chinese). [64] DING D H, CHONG X C, XIAO G Q, et al. Combustion synthesis of B4C/Al2O3/C composite powders and their effects on properties of low carbon MgO-C refractories[J]. Ceramics International, 2019, 45(13): 16433-16441. [65] XU X W, LI Y X, ZHU J Q, et al. High-temperature oxidation behavior of Ti3AlC2 in air[J]. Transactions of Nonferrous Metals Society of China, 2006, 16: s869-s873. [66] WANG X H, ZHOU Y C. Oxidation behavior of Ti3AlC2 at 1 000~1 400 ℃ in air[J]. Corrosion Science, 2003, 45(5): 891-907. [67] 梅炳初,徐学文,朱教群,等.Ti3AlC2的制备与微观结构[J].硅酸盐学报,2004,32(7):897-900. MEI B C, XU X W, ZHU J Q, et al. Fabrication and microstructure of Ti3AlC2[J]. Journal of the Chinese Ceramic Society, 2004, 32(7): 897-900 (in Chinese). [68] CHEN J F, LI N, YAN W. Influence of Ti3AlC2 on corrosion resistance and microstructure of Al2O3-Ti3AlC2-C refractories in contact with ladle slag[J]. Journal of the European Ceramic Society, 2016, 36(6): 1505-1511. [69] CHEN J F, LI N, HUBÁLKOVÁ J, et al. Elucidating the role of Ti3AlC2 in low carbon MgO-C refractories: antioxidant or alternative carbon source?[J]. Journal of the European Ceramic Society, 2018, 38(9): 3387-3394. [70] CHEN J F, LI N, YAN W, et al. Influence of Ti3AlC2 on microstructure and thermal mechanical properties of Al2O3-Ti3AlC2-C refractories[J]. Ceramics International, 2016, 42(12): 14126-14134. |
[1] | 陈洋, 邓承继, 娄晓明, 丁军, 余超. 低碳MgO-C耐火材料结构和性能优化的研究进展[J]. 硅酸盐通报, 2022, 41(6): 2153-2159. |
[2] | 陈帅, 王庆平, 王彦君, 吴求刚, 赵恒, 陈孝杨, 卢春阳. 地质聚合物固定重金属离子的研究进展[J]. 硅酸盐通报, 2022, 41(10): 3501-3510. |
[3] | 张於亮, 汪振华, 姜志嵩, 张铁. 微波烧结陶瓷结合剂金刚石砂轮研究[J]. 硅酸盐通报, 2022, 41(10): 3675-3679. |
[4] | 张爱菊, 李子成, 冯婧, 李志宏. 金刚石增强Na2O-B2O3-Al2O3-SiO2系陶瓷基复合材料的界面研究[J]. 硅酸盐通报, 2021, 40(5): 1666-1671. |
[5] | 金新新, 林鹏, 刘峰, 李赛赛, 李明辉, 夏晓宇, 劳栋, 贾文宝, 单卿. 碳纤维长度以及添加量对碳化硅网状多孔陶瓷性能的影响[J]. 硅酸盐通报, 2021, 40(4): 1330-1337. |
[6] | 梅涛, 黄启忠, 王绍斌, 潘富强, 冯秀鹏, 李洪雪. 碱金属氧化物Na2O对陶瓷结合剂金刚石磨具性能的影响[J]. 硅酸盐通报, 2021, 40(3): 978-983. |
[7] | 李君君, 王云峰, 张爱菊, 李子成, 庞同军, 李志宏. 金属铝粉和纳米Al2O3粉对陶瓷结合剂性能的影响[J]. 硅酸盐通报, 2021, 40(11): 3777-3783. |
[8] | 杨雨菲, 刘浩, 王周福, 刘文元, 马妍, 王玺堂, 柳茂林. 添加剂对酸性硅溶胶及料浆胶凝与流变行为的影响[J]. 硅酸盐通报, 2021, 40(10): 3292-3297. |
[9] | 张思思, 王庆虎, 彭红, 李亚伟, 舒小妹, 戴长浩, 王丹滨, ARINDAM Mukherjee. 新型结合剂SioxX-Zero对喷煤管用无水泥浇注料显微结构和性能的影响[J]. 硅酸盐通报, 2021, 40(10): 3298-3304. |
[10] | 倪红军;唐伟佳;吕帅帅;倪威;汪兴兴;李松元. 添加剂掺量对铝灰非烧结砖组织和性能的影响[J]. 硅酸盐通报, 2020, 39(2): 520-526. |
[11] | 王少阳;李国华;徐泽;陈树江. 铝碳质长水口用无铝抗氧化涂层的制备[J]. 硅酸盐通报, 2020, 39(2): 612-615. |
[12] | 李姝欣;段锋;任学华;马爱琼;李彬. 连铸用Al2O3-C滑板研究现状与展望[J]. 硅酸盐通报, 2019, 38(9): 2847-285. |
[13] | 丁鑫;夏光华;林锦威;徐玉欣. 不同添加剂对干法制粉生坯早期强度的试验研究[J]. 硅酸盐通报, 2019, 38(3): 649-652. |
[14] | 秦增锋;尹育航;许鹏飞;刘凯. 烧结温度对陶瓷结合剂金刚石砂轮性能的影响[J]. 硅酸盐通报, 2018, 37(7): 2152-2156. |
[15] | 关磊;张力嫱;闫启博;张娜;张宇航;王莹. 新型润滑油添加剂的制备及润滑油性质研究进展[J]. 硅酸盐通报, 2018, 37(5): 1632-1636. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||